Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of lung adenocarcinoma through menin and polycomb gene-mediated repression of growth factor pleiotrophin

Abstract

Menin upregulates transcription of cell-cycle inhibitors to suppress endocrine tumors, but it is poorly understood how menin suppresses non-endocrine tumors such as lung cancer. Here, we show that menin inhibits proliferation of human lung cancer cells and growth of lung cancer in mice. The menin-mediated tumor suppression requires repression of growth factor pleiotrophin (PTN), which binds to its cell surface receptor, anaplastic lymphoma kinase (ALK) that is activated in certain lung adenocarcinomas. Menin represses PTN transcription and PTN-induced proliferation of human lung cancer cells, and menin expression is substantially reduced in primary human lung adenocarcinomas. Notably, menin binds the PTN locus and enhances Polycomb gene Enhancer of Zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27m3), a negative mark for gene transcription but does not affect histone H3K4 methylation that is usually upregulated by menin in endocrine cells. Together, our findings indicate that menin suppresses lung cancer partly through increasing Polycomb gene-mediated H3K27 methylation and repressing PTN transcription, unraveling a novel, epigenetically regulated PTN–ALK signaling pathway in suppressing lung cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  CAS  Google Scholar 

  • Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR et al. (1997). Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276: 404–407.

    Article  CAS  Google Scholar 

  • Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, Silva A et al. (2006). The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 103: 1018–1023.

    Article  CAS  Google Scholar 

  • Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R . (1997). An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57: 1814–1819.

    CAS  PubMed  Google Scholar 

  • Herbst RS, Heymach JV, Lippman SM . (2008). Lung cancer. N Engl J Med 359: 1367–1380.

    Article  CAS  Google Scholar 

  • Jager R, List B, Knabbe C, Souttou B, Raulais D, Zeiler T et al. (2002). Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients. Br J Cancer 86: 858–863.

    Article  CAS  Google Scholar 

  • Jemal A, Thomas A, Murray T, Thun M . (2002). Cancer statistics, 2002. CA Cancer J Clin 52: 23–47.

    Article  Google Scholar 

  • Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D'Andrea AD et al. (2003). Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 63: 4204–4210.

    CAS  PubMed  Google Scholar 

  • Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y et al. (2005). Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 102: 14659–14664.

    Article  CAS  Google Scholar 

  • La P, Schnepp RW, D Petersen C, C Silva A, Hua X . (2004). Tumor suppressor menin regulates expression of insulin-like growth factor binding protein 2. Endocrinology 145: 3443–3450.

    Article  CAS  Google Scholar 

  • Lemos MC, Thakker RV . (2008). Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29: 22–32.

    Article  CAS  Google Scholar 

  • Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K et al. (2005). Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280: 26953–26964.

    Article  CAS  Google Scholar 

  • Martin C, Zhang Y . (2007). Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19: 266–272.

    Article  CAS  Google Scholar 

  • Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M et al. (2000). Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 97: 2603–2608.

    Article  CAS  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. (2002). MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107–1117.

    Article  CAS  Google Scholar 

  • Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. (2005). Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 102: 749–754.

    Article  CAS  Google Scholar 

  • Pei XH, Bai F, Smith MD, Xiong Y . (2007). p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res 67: 3162–3170.

    Article  CAS  Google Scholar 

  • Perez-Pinera P, Chang Y, Deuel TF . (2007a). Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 6: 2877–2883.

    Article  CAS  Google Scholar 

  • Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF . (2007b). Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J Biol Chem 282: 28683–28690.

    Article  CAS  Google Scholar 

  • Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A . (2002). Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277: 14153–14158.

    Article  CAS  Google Scholar 

  • Ringrose L, Paro R . (2007). Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134: 223–232.

    Article  CAS  Google Scholar 

  • Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA et al. (2006). Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 66: 5707–5715.

    Article  CAS  Google Scholar 

  • Schnepp RW, Mao H, Sykes SM, Zong WX, Silva A, La P et al. (2004). Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem 279: 10685–10691.

    Article  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . (2007). Genome regulation by polycomb and trithorax proteins. Cell 128: 735–745.

    Article  CAS  Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448: 561–566.

    Article  CAS  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    Article  CAS  Google Scholar 

  • Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al. (2001). Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276: 16772–16779.

    Article  CAS  Google Scholar 

  • Yan J, Chen YX, Desmond A, Silva A, Yang Y, Wang H et al. (2006). Cdx4 and menin co-regulate Hoxa9 expression in hematopoietic cells. PLoS ONE 1: e47.

    Article  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639–5649.

    Article  CAS  Google Scholar 

  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ . (1998). MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95: 10632–10636.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is in partly supported by NFSC Grants (No 30701003, GH Jin), the Natural Science Foundation of Fujian Province of China (No C0710044, GH Jin), National Cancer Institute Short-Term Scientist Exchange Program (GH Jin), and National Cancer Institute Grants (R01CA100912 and R01CA113962, XH). We appreciate the valuable comments from other members of our laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Hua or G-H Jin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, SB., Feng, ZJ., Xu, B. et al. Suppression of lung adenocarcinoma through menin and polycomb gene-mediated repression of growth factor pleiotrophin. Oncogene 28, 4095–4104 (2009). https://doi.org/10.1038/onc.2009.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.273

Keywords

This article is cited by

Search

Quick links