Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair

Abstract

The failure of conventional therapies in glioblastoma (GBM) is largely due to an aberrant activity of survival cascades, such as PI3 kinase (PI3K)/Akt-mediated signaling. This study is the first to show that the class I PI3K inhibitor, PI-103, enhances chemotherapy-induced cell death of GBM cells. Concurrent treatment with PI-103 and DNA-damaging drugs, in particular doxorubicin, significantly increases apoptosis and reduces colony formation compared with chemotherapy treatment alone. The underlying molecular mechanism for this chemosensitization was shown by two independent approaches, that is, pharmacological and genetic inhibition of PI3K, DNA-PK and mTOR, to involve inhibition of DNA-PK-mediated DNA repair. Accordingly, blockage of PI3K or DNA-PK, but not of mTOR, significantly delays the resolution of doxorubicin-induced DNA damage and concomitantly increases apoptosis. Importantly, not only are several GBM cell lines chemosensitized by PI-103 but also GBM stem cells. Clinical relevance was further confirmed by the use of primary cultured GBM cells, which also exhibit increased cell death and reduced colony formation on combined treatment with PI-103 and doxorubicin. By identifying class I PI3K inhibitors as powerful agents in enhancing the lethality of DNA-damaging drugs, to which GBMs are usually considered unresponsive, our findings have important implications for the design of rational combination regimens in overcoming the frequent chemoresistance of GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Article  CAS  Google Scholar 

  • Bozulic L, Surucu B, Hynx D, Hemmings BA . (2008). PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30: 203–213.

    Article  CAS  Google Scholar 

  • Brendler-Schwaab S, Hartmann A, Pfuhler S, Speit G . (2005). The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 20: 245–254.

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Cavaliere R, Wen PY, Schiff D . (2007). Novel therapies for malignant gliomas. Neurol Clin 25: 1141–1171, x.

    Article  Google Scholar 

  • Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A et al. (2004). The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22: 1926–1933.

    Article  CAS  Google Scholar 

  • Chen JS, Zhou LJ, Entin-Meer M, Yang X, Donker M, Knight ZA et al. (2008). Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7: 841–850.

    Article  CAS  Google Scholar 

  • Christmann M, Tomicic MT, Roos WP, Kaina B . (2003). Mechanisms of human DNA repair: an update. Toxicology 193: 3–34.

    Article  CAS  Google Scholar 

  • Colman H, Aldape K . (2008). Molecular predictors in glioblastoma: toward personalized therapy. Arch Neurol 65: 877–883.

    Article  Google Scholar 

  • DeAngelis LM . (2001). Brain tumors. N Engl J Med 344: 114–123.

    Article  CAS  Google Scholar 

  • Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G et al. (2006). Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13: 1238–1241.

    Article  CAS  Google Scholar 

  • Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM et al. (2007). A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67: 7960–7965.

    Article  CAS  Google Scholar 

  • Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. (2006). A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9: 341–349.

    Article  CAS  Google Scholar 

  • Feng J, Park J, Cron P, Hess D, Hemmings BA . (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279: 41189–41196.

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Celeste A, Nussenzweig A . (2003). Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2: 426–427.

    Article  CAS  Google Scholar 

  • Fruman DA, Meyers RE, Cantley LC . (1998). Phosphoinositide kinases. Annu Rev Biochem 67: 481–507.

    Article  CAS  Google Scholar 

  • Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM . (1997). The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57: 3823–3829.

    CAS  PubMed  Google Scholar 

  • Giagkousiklidis S, Vogler M, Westhoff MA, Kasperczyk H, Debatin KM, Fulda S . (2005). Sensitization for gamma-irradiation-induced apoptosis by second mitochondria-derived activator of caspase. Cancer Res 65: 10502–10513.

    Article  CAS  Google Scholar 

  • Glas M, Koch H, Hirschmann B, Jauch T, Steinbrecher A, Herrlinger U et al. (2007). Pegylated liposomal doxorubicin in recurrent malignant glioma: analysis of a case series. Oncology 72: 302–307.

    Article  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  Google Scholar 

  • Hau P, Fabel K, Baumgart U, Rummele P, Grauer O, Bock A et al. (2004). Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100: 1199–1207.

    Article  CAS  Google Scholar 

  • Ihle NT, Powis G . (2009). Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 8: 1–9.

    Article  CAS  Google Scholar 

  • Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K et al. (2008). Cancer stem cells and chemoradiation resistance. Cancer Sci 99: 1871–1877.

    Article  CAS  Google Scholar 

  • Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC et al. (1999). Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9: 469–479.

    Article  CAS  Google Scholar 

  • Jackson SP . (2002). Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687–696.

    Article  CAS  Google Scholar 

  • Jiang BH, Liu LZ . (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784: 150–158.

    Article  CAS  Google Scholar 

  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A . (2007). Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282: 21206–21212.

    Article  CAS  Google Scholar 

  • Koehn H, Magan N, Isaacs RJ, Stowell KM . (2007). Differential regulation of DNA damage repair protein Rad51 in human tumour cell lines exposed to doxorubicin. Anticancer Drugs 18: 419–425.

    Article  CAS  Google Scholar 

  • Kreisl TN, Lassman AB, Mischel PS, Rosen N, Scher HI, Teruya-Feldstein J et al. (2009). A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). J Neurooncol 92: 99–105.

    Article  CAS  Google Scholar 

  • Lees-Miller SP . (2008). PIKK-ing a new partner: a new role for PKB in the DNA damage response. Cancer Cell 13: 379–380.

    Article  CAS  Google Scholar 

  • Maira SM, Stauffer F, Schnell C, Garcia-Echeverria C . (2009). PI3K inhibitors for cancer treatment: where do we stand? Biochem Soc Trans 37: 265–272.

    Article  CAS  Google Scholar 

  • Maira SM, Voliva C, Garcia-Echeverria C . (2008). Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Expert Opin Ther Targets 12: 223–238.

    Article  CAS  Google Scholar 

  • Newton HB . (2008). Glioblastoma multiforme. Curr Treat Options Neurol 10: 285–294.

    Article  Google Scholar 

  • Nitiss JL . (2002). DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Curr Opin Investig Drugs 3: 1512–1516.

    CAS  PubMed  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. (2004). Genetic pathways to glioblastoma: a population-based study. Cancer Res 64: 6892–6899.

    Article  CAS  Google Scholar 

  • Opel D, Poremba C, Simon T, Debatin KM, Fulda S . (2007). Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res 67: 735–745.

    Article  CAS  Google Scholar 

  • Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S . (2008). Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68: 6271–6280.

    Article  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  Google Scholar 

  • Pawelczak KS, Turchi JJ . (2008). A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining. Nucleic Acids Res 36: 4022–4031.

    Article  CAS  Google Scholar 

  • Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J et al. (2008). Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res 68: 5915–5923.

    Article  CAS  Google Scholar 

  • Proud CG . (2004). The multifaceted role of mTOR in cellular stress responses. DNA Repair (Amst) 3: 927–934.

    Article  CAS  Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. (2007). Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67: 5840–5850.

    Article  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assemply and Akt/PKB. Mol Cell 22: 159–168.

    Article  CAS  Google Scholar 

  • Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E et al. (2008). Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14: 485–493.

    Article  CAS  Google Scholar 

  • Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO et al. (2006). Changing paradigms—an update on the multidisciplinary management of malignant glioma. Oncologist 11: 165–180.

    Article  CAS  Google Scholar 

  • Tisdale MJ . (1985). Antitumour imidazotetrazines--XI: effect of 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3 H)-one [CCRG 81045; M and B 39831 NSC 362856] on poly(ADP-ribose) metabolism. Br J Cancer 52: 789–792.

    Article  CAS  Google Scholar 

  • Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K et al. (2006). Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12: 4119–4126.

    Article  CAS  Google Scholar 

  • Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J et al. (2008). Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 7: 1772–1781.

    Article  CAS  Google Scholar 

  • Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW . (2003). Radiosensitization and DNA repair inhibition by the combined use of novel inhibitiors of DNA-dependent proetin kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63: 6008–6015.

    CAS  Google Scholar 

  • Yaneva M, Li H, Marple T, Hasty P . (2005). Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Res 33: 5320–5330.

    Article  CAS  Google Scholar 

  • Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P . (2008). Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8: 393–412.

    Article  CAS  Google Scholar 

  • Yavuzer U, Smith GC, Bliss T, Werner D, Jackson SP . (1998). DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D. Genes Dev 12: 2188–2199.

    Article  CAS  Google Scholar 

  • Yuan TL, Cantley LC . (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Lane (Novartis Institute for BioMedical Research, Oncology Basel, Novartis Pharma AG, Basel, Switzerland) for providing everolimus, R Pallini and R De Maria for glioblastoma-initiating cells and S Piater for expert technical assistance. This work was supported by grants from Deutsche Forschungsgemeinschaft, Deutsche Krebshilfe, European Community (ApopTrain, APO-SYS), Novartis Stiftung für therapeutische Forschung and IAP6/18 (to SF), and the University of Ulm junior research grant (to JAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westhoff, MA., Kandenwein, J., Karl, S. et al. The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene 28, 3586–3596 (2009). https://doi.org/10.1038/onc.2009.215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.215

Keywords

This article is cited by

Search

Quick links