Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization

Abstract

We have previously reported the identification of a novel 17 kDa truncated isoform of the cyclin D2 activated in 13% of the leukemias induced by the Graffi murine leukemia retrovirus. Retroviral integration in the Gris1 locus causes an alternative splicing of the mouse cyclin D2 gene and expression of a truncated protein of 159 amino acids that is detected at high levels in the Gris1 tumors and also in normal mouse tissues mainly the brain and ovaries. A truncated form of the cyclin D2 was also found in human. We show here that both mouse- and human-truncated cyclin D2 are able to transform primary mouse embryo fibroblasts (MEF) when co-expressed with an activated Ras protein. The truncated cyclin D2 localizes only to the cytoplasm of transfected cells. It has retained the ability to interact with cyclin-dependent kinases (CDKs), although it is a poor catalyst of pRb phosphorylation. Interestingly, the presence of a similar, alternatively spliced cyclin D2 mRNA was also detected in some human brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andersen G, Busso D, Poterszman A, Hwang JR, Wurtz JM, Ripp R et al. (1997). The structure of cyclin H: common mode of kinase activation and specific features. EMBO J 16: 958–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando K, Ajchenbaum-Cymbalista F, Griffin JD . (1993). Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci USA 90: 9571–9575.

    Article  CAS  PubMed  Google Scholar 

  • Assoian RK . (1997). Control of the G1 phase cyclin-dependent kinases by mitogenic growth factors and the extracellular matrix. Cytokine Growth Factor Rev 8: 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G . (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7: 812–821.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rajpert-de Meyts E, Skakkebaek NE, Bartek J . (1999). D-type cyclins in adult human testis and testicular cancer: relation to cell type, proliferation, differentiation, and malignancy. J Pathol 187: 573–581.

    Article  PubMed  Google Scholar 

  • Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G . (1999). Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human maligant gliomas. Brain Pathol 9: 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Denicourt C, Kozak C, Rassart E . (2002). A new common integration site in Graffi MuLV-induced leukemias, Gris1: overexpression of a truncated cyclin D2 due to alternative splicing. J Virol 77: 37–44.

    Article  Google Scholar 

  • Diehl JA, Sherr CJ . (1997). A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol 17: 7362–7374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher CL, Pei GK . (1997). Modification of a PCR-Based site-directed mutagenesis method. Biotechniques 23: 570–574.

    Article  CAS  PubMed  Google Scholar 

  • Greenberger JS, Sakakeeny MA, Humphries RK, Eaves CJ, Eckner RJ . (1983). Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci USA 80: 2931–2935.

    Article  CAS  PubMed  Google Scholar 

  • Hanna Z, Jankowski M, Tremblay P, Jiang X, Milatovich A, Francke U et al. (1993). The Vin-1 gene, identified by provirus insertional mutagenesis, is the cyclin D2. Oncogene 8: 1661–1666.

    CAS  PubMed  Google Scholar 

  • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J et al. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Kato J, Matsuoka M, Polyak K, Massagué J, Sherr CJ . (1994). Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27kip1) of cyclin-dependent kinase-4 activation. Cell 79: 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Kerkhoff E, Ziff EB . (1995). Cyclin D2 and Ha-Ras transformed rat embryo fibroblasts exhibit a novel deregulation of cell size control and early S phase arrest in low serum. EMBO J 14: 1892–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Chamberlin HM, Morgan DO, Kim SH . (1996). Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol 3: 849–855.

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Gladden AB, Diehl JA . (2003). An alternatively spliced Cyclin D1 isoform, Cyclin D1b, is a nuclear oncogene. Cancer Res 63: 7056–7061.

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Kato JY, Fisher RP, Morgan DO, Sherr CJ . (1994). Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol Cell Biol 14: 7265–7275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF et al. (1992). Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF et al. (1993). Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559–1571.

    Article  CAS  PubMed  Google Scholar 

  • Resnitzky D . (1997). Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. Mol Cell Biol 17: 5640–5647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roovers K, Davey G, Zhu X, Bottazzi ME, Assoian RK . (1999). Alpha5beta1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol Biol Cell 10: 3197–3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP . (1996). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3: 696–700.

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Zerfass-Thome K, Berges J, Middendorp S, Jansen-Durr P, Henglein B . (1996). Anchorage-dependent transcription of the cyclin A gene. Mol Cell Biol 16: 4632–4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz MA, Assoian RK . (2001). Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553–2560.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY et al. (1996). Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384: 470–474.

    Article  CAS  PubMed  Google Scholar 

  • Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z et al. (2003). Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem 278: 30339–30347.

    Article  CAS  PubMed  Google Scholar 

  • Susaki E, Nakayama K, Nakayama KI . (2007). Cyclin D2 translocate p27 out of the nucleus and promotes its degradation at the G0–G1 transition. Mol Cell Biol 13: 4626–4640.

    Article  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM et al. (1982). Mechanism of activation of a human oncogene. Nature 300: 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Taïeb F, Jessus C . (1996). Xenopus cyclin D2: cloning and expression in oocytes and during early development. Biol Cell 3: 99–111.

    Article  Google Scholar 

  • Teramoto N, Pokrovskaja K, Szekely L, Polack A, Yoshino T, Akagi T et al. (1999). Expression of cyclin D2 and D3 in lymphoid lesions. Int J Cancer 81: 543–550.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay PJ, Kozak CA, Jolicoeur P . (1992). Identification of a novel gene, Vin-1, in murine leukemia virus-induced T-cell leukemias by provirus insertional mutagenesis. J Virol 66: 1344–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Tachibana O, Sata K . (1996). Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Zhang H, Beach D . (1992). D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK . (1996). Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 133: 391–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Arthur and Sonia Labatt Brain Tumour Research Center (http://www.sickkids.ca/BTRC/ Toronto, Canada) and Dr Abhijit Guha for the gift of human tumor tissues. This work was supported by grant FRN 37994 from the Canadian Institutes of Health Research and by La Société de recherche sur le Cancer. CD is a recipient of a FCAR PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Rassart.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denicourt, C., Legault, P., McNabb, FA. et al. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene 27, 1253–1262 (2008). https://doi.org/10.1038/sj.onc.1210750

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210750

Keywords

This article is cited by

Search

Quick links