Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

BRAFE600 in benign and malignant human tumours

Abstract

Of the RAF family of protein kinases, BRAF is the only member to be frequently activated by mutation in cancer. A single amino acid substitution (V600E) accounts for the vast majority and results in constitutive activation of BRAF kinase function. Its expression is required to maintain the proliferative and oncogenic characteristics of BRAFE600-expressing human tumour cells. Although BRAFE600 acts as an oncogene in the context of additional genetic lesions, in primary cells it appears to be associated rather with transient stimulation of proliferation. Eventually, BRAFE600 signalling triggers cell cycle arrest with the hallmarks of cellular senescence, as is illustrated by several recent studies in cultured cells, animal models and benign human lesions. In this review, we will discuss recent advances in our understanding of the role of BRAFE600 in benign and malignant human tumours and the implications for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65: 4005–4011.

    Article  CAS  PubMed  Google Scholar 

  • Baloch ZW, LiVolsi VA . (2006). Microcarcinoma of the thyroid. Adv Anat Pathol 13: 69–75.

    Article  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Bastian BC, LeBoit PE, Pinkel D . (2000). Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol 157: 967–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer J, Curtin JA, Pinkel D, Bastian BC . (2007). Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127: 179–182.

    Article  CAS  PubMed  Google Scholar 

  • Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR . (1987). The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res 15: 595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benanti JA, Galloway DA . (2004). Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24: 2842–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett DC . (2003). Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22: 3063–3069.

    Article  CAS  PubMed  Google Scholar 

  • Bennett DC, Medrano EE . (2002). Molecular regulation of melanocyte senescence. Pigment Cell Res 15: 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26: 1224–1232.

    Article  CAS  PubMed  Google Scholar 

  • Boisvert-Adamo K, Aplin AE . (2006). B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene 25: 4848–4856.

    Article  CAS  PubMed  Google Scholar 

  • Bonner TI, Kerby SB, Sutrave P, Gunnell MA, Mark G, Rapp UR . (1985). Structure and biological activity of human homologs of the raf/mil oncogene. Mol Cell Biol 5: 1400–1407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes S, Rowe J, Ruas M, Llanos S, Clark PA, Lomax M et al. (2002). INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21: 2936–2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer T, Martin P, Herzog S, Misawa Y, Daly RJ, Reth M . (2006). Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein. Oncogene 25: 6262–6276.

    Article  CAS  PubMed  Google Scholar 

  • Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A et al. (2000). Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 19: 2900–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipel A, Lefevre G, Pouponnot C, Mouriaux F, Eychene A, Mascarelli F . (2003). Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J Biol Chem 278: 42409–42418.

    Article  CAS  PubMed  Google Scholar 

  • Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L et al. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433: 764–769.

    Article  CAS  PubMed  Google Scholar 

  • Casula M, Colombino M, Satta MP, Cossu A, Ascierto PA, Bianchi-Scarra G et al. (2004). BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J Clin Oncol 22: 286–292.

    Article  CAS  PubMed  Google Scholar 

  • Chan TL, Zhao W, Leung SY, Yuen ST . (2003). BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63: 4878–4881.

    CAS  PubMed  Google Scholar 

  • Chin L, Garraway LA, Fisher DE . (2006). Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20: 2149–2182.

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon CC et al. (1997). Cooperative effects of INK4A and ras in melanoma susceptibility in vivo. Genes Dev 11: 2822–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong H, Vikis HG, Guan KL . (2003). Mechanisms of regulating the Raf kinase family. Cell Signal 15: 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Christensen C, Guldberg P . (2005). Growth factors rescue cutaneous melanoma cells from apoptosis induced by knockdown of mutated (V 600 E) B-RAF. Oncogene 24: 6292–6302.

    Article  CAS  PubMed  Google Scholar 

  • Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA . (2005). Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 37: 745–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN et al. (2005a). Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115: 94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciampi R, Nikiforov YE . (2005). Alterations of the BRAF gene in thyroid tumors. Endocr Pathol 16: 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Ciampi R, Zhu Z, Nikiforov YE . (2005b). BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 16: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Rosenbaum E, Begum S, Goldenberg D, Esche C, Lavie O et al. (2004). Exon 15 BRAF mutations are uncommon in melanomas arising in nonsun-exposed sites. Clin Cancer Res 10: 3444–3447.

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B et al. (2003). BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95: 625–627.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M . (2006). The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6: 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS . (2003). Treatment of metastatic melanoma with an orally available inhibitor of the Ras–Raf–MAPK cascade. Cancer Res 63: 5669–5673.

    CAS  PubMed  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin JA, Busam K, Pinkel D, Bastian BC . (2006). Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24: 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  • da Rocha Dias S, Friedlos F, Light Y, Springer C, Workman P, Marais R . (2005). Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65: 10686–10691.

    Article  CAS  PubMed  Google Scholar 

  • Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D et al. (2004). BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 23: 5968–5977.

    Article  CAS  PubMed  Google Scholar 

  • Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M . (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21: 379–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • De Raeve LE, Claes A, Ruiter DJ, van Muijen GN, Roseeuw D, van Kempen LC . (2006). Distinct phenotypic changes between the superficial and deep component of giant congenital melanocytic naevi: a rationale for curettage. Br J Dermatol 154: 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8: 1053–1063.

    Article  CAS  PubMed  Google Scholar 

  • Dhomen N, Marais R . (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo E, Espin E, Armengol M, Oliveira C, Pinto M, Duval A et al. (2004). Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39: 138–142.

    Article  CAS  PubMed  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    Article  CAS  PubMed  Google Scholar 

  • Emuss V, Garnett M, Mason C, Marais R . (2005). Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65: 9719–9726.

    Article  CAS  PubMed  Google Scholar 

  • Errico ME, Staibano S, Tranfa F, Bonavolonta G, Lo Muzio L, Somma P et al. (2003). Expression of cyclin-D1 in uveal malignant melanoma. Anticancer Res 23: 2701–2706.

    PubMed  Google Scholar 

  • Eskandarpour M, Kiaii S, Zhu C, Castro J, Sakko AJ, Hansson J . (2005). Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115: 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Fabian JR, Daar IO, Morrison DK . (1993). Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13: 7170–7179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldser DM, Greider CW . (2007). Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11: 461–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A et al. (2006). Cosmic 2005. Br J Cancer 94: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franza BR, Maruyama K, Garrels JI, Ruley HE . (1986). In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell 44: 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Garnett MJ, Marais R . (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6: 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D et al. (2005). Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24: 6646–6656.

    Article  CAS  PubMed  Google Scholar 

  • Goding CR . (2000). Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev 14: 1712–1728.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein NS . (2006). Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am J Clin Pathol 125: 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein S, Moerman EJ, Fujii S, Sobel BE . (1994). Overexpression of plasminogen activator inhibitor type-1 in senescent fibroblasts from normal subjects and those with Werner syndrome. J Cell Physiol 161: 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR . (2004). The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol 24: 2923–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorden A, Osman I, Gai W, He D, Huang W, Davidson A et al. (2003). Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res 63: 3955–3957.

    CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray-Schopfer VC, da Rocha Dias S, Marais R . (2005). The role of B-RAF in melanoma. Cancer Metast Rev 24: 165–183.

    Article  CAS  Google Scholar 

  • Gray-Schopfer V, Wellbrock C, Marais R . (2007). Melanoma biology and new targeted therapy. Nature 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, Solit D et al. (2006). V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 103: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Gruis NA, van der Velden PA, Sandkuijl LA, Prins DE, Weaver-Feldhaus J, Kamb A et al. (1995). Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 10: 351–353.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J . (1997). Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57: 3660–3663.

    CAS  PubMed  Google Scholar 

  • Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37: 1047–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Ramjuan AR, Haiko P, Wang Y, Warne PH, Nicke B et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129: 957–968.

    Article  CAS  PubMed  Google Scholar 

  • Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22: 2111–2123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL et al. (2005). The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102: 6092–6097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L . (1965). The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636.

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM . (2006). Cellular senescence in aging primates. Science 311: 1257.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA . (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202.

    CAS  PubMed  Google Scholar 

  • Ho CL, Kurman RJ, Dehari R, Wang TL, Shih Ie M . (2004). Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res 64: 6915–6918.

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J et al. (2006). Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 66: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  • Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19: 290–302.

    Article  CAS  PubMed  Google Scholar 

  • Huebner K, ar-Rushdi A, Griffin CA, Isobe M, Kozak C, Emanuel BS et al. (1986). Actively transcribed genes in the raf oncogene group, located on the X chromosome in mouse and human. Proc Natl Acad Sci USA 83: 3934–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, Slingluff Jr CL et al. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279: 33168–33176.

    Article  CAS  PubMed  Google Scholar 

  • Hussein MR, Haemel AK, Wood GS . (2003). p53-related pathways and the molecular pathogenesis of melanoma. Eur J Cancer Prev 12: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD et al. (1994). Germline p16 mutations in familial melanoma. Nat Genet 8: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H et al. (2006). High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol 126: 2111–2118.

    Article  CAS  PubMed  Google Scholar 

  • Ikawa S, Fukui M, Ueyama Y, Tamaoki N, Yamamoto T, Toyoshima K . (1988). B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol 8: 2651–2654.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs JS, Xu W, Neckers L . (2003). Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Jackson S, Harland M, Turner F, Taylor C, Chambers PA, Randerson-Moor J et al. (2005). No evidence for BRAF as a melanoma/nevus susceptibility gene. Cancer Epidemiol Biomarkers Prev 14: 913–918.

    Article  CAS  PubMed  Google Scholar 

  • James MR, Roth RB, Shi MM, Kammerer S, Nelson MR, Stark MS et al. (2005). BRAF polymorphisms and risk of melanocytic neoplasia. J Invest Dermatol 125: 1252–1258.

    Article  CAS  PubMed  Google Scholar 

  • Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR . (1984). Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307:281–284.

    Article  CAS  PubMed  Google Scholar 

  • Jansen HW, Ruckert B, Lurz R, Bister K . (1983). Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J 2: 1969–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD et al. (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53: 1137–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene 23: 6292–6298.

    Article  CAS  PubMed  Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA . (2003). High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63: 1454–1457.

    CAS  PubMed  Google Scholar 

  • King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S et al. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396: 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH et al. (2005). Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65: 4238–4245.

    Article  CAS  PubMed  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ezzat S, Asa SL . (2006). Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6: 292–306.

    Article  CAS  PubMed  Google Scholar 

  • Kramer BW, Gotz R, Rapp UR . (2004). Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure. BMC Cancer 4: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasilnikov M, Ivanov VN, Dong J, Ronai Z . (2003). ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene 22: 4092–4101.

    Article  CAS  PubMed  Google Scholar 

  • Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A . (2001). Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhonen S et al. (2003a). BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res 9: 3362–3368.

    CAS  PubMed  Google Scholar 

  • Kumar R, Angelini S, Hemminki K . (2003b). Activating BRAF and N-Ras mutations in sporadic primary melanomas: an inverse association with allelic loss on chromosome 9. Oncogene 22: 9217–9224.

    Article  CAS  PubMed  Google Scholar 

  • Kuwata T, Kitagawa M, Kasuga T . (1993). Proliferative activity of primary cutaneous melanocytic tumours. Virchows Arch A Pathol Anat Histopathol 423: 359–364.

    Article  CAS  PubMed  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  • Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P et al. (2006). MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313: 521–522.

    Article  CAS  PubMed  Google Scholar 

  • Lang J, Boxer M, MacKie R . (2003). Absence of exon 15 BRAF germline mutations in familial melanoma. Hum Mutat 21: 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Lassam NJ, From L, Kahn HJ . (1993). Overexpression of p53 is a late event in the development of malignant melanoma. Cancer Res 53: 2235–2238.

    CAS  PubMed  Google Scholar 

  • Laud K, Kannengiesser C, Avril MF, Chompret A, Stoppa-Lyonnet D, Desjardins L et al. (2003). BRAF as a melanoma susceptibility candidate gene? Cancer Res 63: 3061–3065.

    CAS  PubMed  Google Scholar 

  • Lee JW, Soung YH, Kim SY, Park WS, Nam SW, Min WS et al. (2005). Mutational analysis of the ARAF gene in human cancers. Apmis 113: 54–57.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Momand J, Finlay CA . (1991). The p53 tumour suppressor gene. Nature 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Fisher DE . (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12: 406–414.

    Article  CAS  PubMed  Google Scholar 

  • Lima J, Trovisco V, Soares P, Maximo V, Magalhaes J, Salvatore G et al. (2004). BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab 89: 4267–4271.

    Article  CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . (1997). Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11: 663–677.

    Article  CAS  PubMed  Google Scholar 

  • Loercher AE, Tank EM, Delston RB, Harbour JW . (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168: 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maelandsmo GM, Holm R, Fodstad O, Kerbel RS, Florenes VA . (1996). Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma: reduced expression in metastatic lesions. Am J Pathol 149: 1813–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al. (2003). Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890.

    Article  CAS  PubMed  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . (2007). The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21: 43–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272: 4378–4383.

    Article  CAS  PubMed  Google Scholar 

  • Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . (1999). Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18: 2137–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor JM, Yu CC, Dublin EA, Barnes DM, Levison DA, MacDonald DM . (1993). p53 immunoreactivity in human malignant melanoma and dysplastic naevi. Br J Dermatol 128: 606–611.

    Article  CAS  PubMed  Google Scholar 

  • McKay MM, Morrison DK . (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene 26: 3113–3121.

    Article  CAS  PubMed  Google Scholar 

  • McPhillips F, Mullen P, MacLeod KG, Sewell JM, Monia BP, Cameron DA et al. (2006). Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis 27: 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Busch S, Lasithiotakis K, Kulms D, Garbe C, Maczey E et al. (2007). Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br J Dermatol 156: 1204–1213.

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K et al. (2005). The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10: 2986–3001.

    Article  CAS  PubMed  Google Scholar 

  • Mercer K, Giblett S, Green S, Lloyd D, DaRocha Dias S, Plumb M et al. (2005). Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res 65: 11493–11500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa Jr C, Mirza M, Mitsutake N, Sartor M, Medvedovic M, Tomlinson C et al. (2006). Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 66: 6521–6529.

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Klaes R, Schmitt C, Boettger MB, Garbe C . (2003a). Exclusion of BRAFV599E as a melanoma susceptibility mutation. Int J Cancer 106: 78–80.

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Sergi C, Garbe C . (2003b). Polymorphisms of the BRAF gene predispose males to malignant melanoma. J Carcinog 2: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyskens Jr FL, Farmer P, Fruehauf JP . (2001). Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Minoo P, Jass JR . (2006). Senescence and serration: a new twist to an old tale. J Pathol 210: 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Miracco C, Margherita De Santi M, Schurfeld K, Santopietro R, Lalinga AV, Fimiani M et al. (2002). Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization-processed sections of cutaneous melanocytic lesions and correlation with telomerase activity. Br J Dermatol 146: 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T et al. (2006). Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66: 6546–6552.

    Article  CAS  PubMed  Google Scholar 

  • Mitsutake N, Knauf JA, Mitsutake S, Mesa Jr C, Zhang L, Fagin JA . (2005). Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65: 2465–2473.

    Article  CAS  PubMed  Google Scholar 

  • Miyamura Y, Coelho SG, Wolber R, Miller SA, Wakamatsu K, Zmudzka BZ et al. (2007). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res 20: 2–13.

    Article  CAS  PubMed  Google Scholar 

  • Molhoek KR, Brautigan DL, Slingluff Jr CL . (2005). Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med 3: 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mooi WJ, Peeper DS . (2006). Oncogene-induced cell senescence: halting on the road to cancer. N Engl J Med 355: 55–64.

    Article  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 20: 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A et al. (2006). Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38: 294–296.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F et al. (2003). BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88: 5399–5404.

    Article  CAS  PubMed  Google Scholar 

  • Papp T, Schipper H, Kumar K, Schiffmann D, Zimmermann R . (2005). Mutational analysis of the BRAF gene in human congenital and dysplastic melanocytic naevi. Melanoma Res 15: 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Pavey S, Johansson P, Packer L, Taylor J, Stark M, Pollock PM et al. (2004). Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23: 4060–4067.

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20.

    Article  CAS  PubMed  Google Scholar 

  • Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J et al. (2001). A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds Jr FH et al. (1983). Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80: 4218–4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp UR, Huleihel M, Pawson T, Linnoila I, Minna JD, Heidecker G et al. (1988). Role of raf oncogenes in lung carcinogenesis. Lung Cancer 4: 162–167.

    Article  Google Scholar 

  • Rauen KA . (2006). Distinguishing Costello versus cardio-facio-cutaneous syndrome: BRAF mutations in patients with a Costello phenotype. Am J Med Genet A 140: 1681–1683.

    Article  PubMed  Google Scholar 

  • Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L et al. (2001). A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20: 5543–5547.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311: 1287–1290.

    Article  CAS  PubMed  Google Scholar 

  • Rotolo S, Diotti R, Gordon RE, Qiao RF, Yao Z, Phelps RG et al. (2005). Effects on proliferation and melanogenesis by inhibition of mutant BRAF and expression of wild-type INK4A in melanoma cells. Int J Cancer 115: 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Rowland BD, Peeper DS . (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6: 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Ruas M, Peters G . (1998). The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378: F115–F177.

    CAS  PubMed  Google Scholar 

  • Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvatore G, De Falco V, Salerno P, Nappi TC, Pepe S, Troncone G et al. (2006). BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 12: 1623–1629.

    Article  CAS  PubMed  Google Scholar 

  • Schreck R, Rapp UR . (2006). Raf kinases: oncogenesis and drug discovery. Int J Cancer 119: 2261–2271.

    Article  CAS  PubMed  Google Scholar 

  • Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A et al. (2006). Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 25: 3357–3364.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    Article  CAS  PubMed  Google Scholar 

  • Sharp S, Workman P, da Rocha Dias S, Friedlos F, Light Y, Springer C et al. (2006). Inhibitors of the HSP90 molecular chaperone: current status activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Adv Cancer Res 95: 323–348.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413: 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L . (2003). Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22: 5055–5059.

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE . (2005). Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26: 867–874.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A et al. (2003). BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22: 4578–4580.

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  PubMed  Google Scholar 

  • Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64: 7002–7010.

    Article  CAS  PubMed  Google Scholar 

  • Stern HM, Zon LI . (2003). Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3: 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Stork PJ, Schmitt JM . (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12: 258–266.

    Article  CAS  PubMed  Google Scholar 

  • Straume O, Smeds J, Kumar R, Hemminki K, Akslen LA . (2002). Significant impact of promoter hypermethylation and the 540 C>T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am J Pathol 161: 229–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straume O, Sviland L, Akslen LA . (2000). Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res 6: 1845–1853.

    CAS  PubMed  Google Scholar 

  • Sturm RA . (2002). Skin colour and skin cancer—MC1R, the genetic link. Melanoma Res 12: 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23: 6031–6039.

    Article  CAS  PubMed  Google Scholar 

  • Sviderskaya EV, Gray-Schopfer VC, Hill SP, Smit NP, Evans-Whipp TJ, Bond J et al. (2003). p16/Cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J Natl Cancer Inst 95: 723–732.

    Article  CAS  PubMed  Google Scholar 

  • Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ et al. (2002). p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 94: 446–454.

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Goto Y, Ichii N, Yamaura M, Murata H, Koga H et al. (2005). Constitutive activation of the mitogen-activated protein kinase signaling pathway in acral melanomas. J Invest Dermatol 125: 318–322.

    Article  CAS  PubMed  Google Scholar 

  • Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T . (1997). Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 74: 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Thomas NE, Berwick M, Cordeiro-Stone M . (2006). Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? J Invest Dermatol 126: 1693–1696.

    Article  CAS  PubMed  Google Scholar 

  • Trotter MJ, Tang L, Tron VA . (1997). Overexpression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) in human cutaneous malignant melanoma. J Cutan Pathol 24: 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Trovisco V, Soares P, Sobrinho-Simoes M . (2006). B-RAF mutations in the etiopathogenesis, diagnosis, and prognosis of thyroid carcinomas. Hum Pathol 37: 781–786.

    Article  CAS  PubMed  Google Scholar 

  • Tsao H, Goel V, Wu H, Yang G, Haluska FG . (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF et al. (2004). SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 64: 5556–5559.

    Article  CAS  PubMed  Google Scholar 

  • Uribe P, Andrade L, Gonzalez S . (2006). Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. J Invest Dermatol 126: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • van Den Berg H, Hennekam RC . (1999). Acute lymphoblastic leukaemia in a patient with cardiofaciocutaneous syndrome. J Med Genet 36: 799–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance KW, Goding CR . (2004). The transcription network regulating melanocyte development and melanoma. Pigment Cell Res 17: 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Voorhoeve PM, Agami R . (2003). The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4: 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Uhara H, Yamazaki Y, Nikaido T, Saida T . (1996). Immunohistochemical detection of CDK4 and p16INK4 proteins in cutaneous malignant melanoma. Br J Dermatol 134: 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Hemmer RM, Sedivy JM . (2001). Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21: 6748–6757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein IB . (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297: 63–64.

    Article  CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Wellbrock C, Marais R . (2005). Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol 170: 703–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  • Willmore-Payne C, Holden JA, Hirschowitz S, Layfield LJ . (2006). BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum Pathol 37: 520–527.

    Article  CAS  PubMed  Google Scholar 

  • Willmore-Payne C, Holden JA, Tripp S, Layfield LJ . (2005). Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol 36: 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Wilson RE, Dooley TP, Hart IR . (1989). Induction of tumorigenicity and lack of in vitro growth requirement for 12-O-tetradecanoylphorbol-13-acetate by transfection of murine melanocytes with v-Ha-ras. Cancer Res 49: 711–716.

    CAS  PubMed  Google Scholar 

  • Wong TH, Rees JL . (2005). The relation between melanocortin 1 receptor (MC1R) variation and the generation of phenotypic diversity in the cutaneous response to ultraviolet radiation. Peptides 26: 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  • Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M et al. (2001). Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf–MEK–extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 21: 3192–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M . (2005). BRAF mutation in thyroid cancer. Endocr Relat Cancer 12: 245–262.

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Farraye FA, Mack C, Posnik O, O'Brien MJ . (2004). BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol 28: 1452–1459.

    Article  PubMed  Google Scholar 

  • Yazdi AS, Palmedo G, Flaig MJ, Puchta U, Reckwerth A, Rutten A et al. (2003). Mutations of the BRAF gene in benign and malignant melanocytic lesions. J Invest Dermatol 121: 1160–1162.

    Article  CAS  PubMed  Google Scholar 

  • Yeh AH, Bohula EA, Macaulay VM . (2006). Human melanoma cells expressing V600E B-RAF are susceptible to IGF1R targeting by small interfering RNAs. Oncogene 25: 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  • Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K et al. (2006). Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 66: 3401–3408.

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Guan KL . (2000). Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19: 5429–5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM . (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Nakamura Y, Yasuoka H, Zhang P, Nakamura M, Mori I et al. (2007). Lack of association between BRAF V600E mutation and mitogen-activated protein kinase activation in papillary thyroid carcinoma. Pathol Int 57: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al. (1996). Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12: 97–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Remco van Doorn for critical reading of the manuscript. DSP is supported by the Dutch Cancer Society, by the Netherlands Organisation for Scientific Research and he is an EMBO Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Peeper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaloglou, C., Vredeveld, L., Mooi, W. et al. BRAFE600 in benign and malignant human tumours. Oncogene 27, 877–895 (2008). https://doi.org/10.1038/sj.onc.1210704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210704

Keywords

This article is cited by

Search

Quick links