Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Colorectal cancer cells with the BRAFV600E mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM

Abstract

The RAF–mitogen-activated protein kinase kinase 1/2–extracellular signal-regulated kinase 1/2 (RAF–MEK1/2–ERK1/2) pathway is activated in many human tumours and can protect cells against growth factor deprivation; however, most such studies have relied upon overexpression of RAF or MEK constructs that are not found in tumours. Here we show that expression of the endogenous BRAFV600E allele in mouse embryonic fibroblasts from conditional knock-in transgenic mice activates ERK1/2, represses the BH3-only protein BIM and protects cells from growth factor withdrawal. Human colorectal cancer (CRC) cell lines harbouring BRAFV600E are growth factor independent for the activation of ERK1/2 and survival. However, treatment with the MEK1/2 inhibitors U0126, PD184352 or the novel clinical candidate AZD6244 (ARRY-142886) overcomes growth factor independence, causing CRC cell death. BIM is de-phosphorylated and upregulated following MEK1/2 inhibition in all CRC cell lines studied and knockdown of BIM reduces cell death, indicating that repression of BIM is a major part of the ability of BRAFV600E to confer growth factor-independent survival. We conclude that a single endogenous BRAFV600E allele is sufficient to repress BIM and prevent death arising from growth factor withdrawal, and CRC cells with BRAFV600E mutations are addicted to the ERK1/2 pathway for repression of BIM and growth factor-independent survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Boisvert-Adamo K, Aplin AE . (2008). Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27: 3301–3312.

    Article  CAS  PubMed  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735–1738.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM . (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.

    Article  CAS  PubMed  Google Scholar 

  • Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ et al. (2007). BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med 4: 1669–1679.

    Article  CAS  PubMed  Google Scholar 

  • Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A . (2007). Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 4: 1681–1689.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R et al. (2007). AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 6: 2209–2219.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  • Egle A, Harris AW, Bouillet P, Cory S . (2004). Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101: 6164–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM . (2003). Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 63: 8330–8337.

    CAS  PubMed  Google Scholar 

  • Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R et al. (2007a). ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J 26: 2856–2867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewings KE, Wiggins CM, Cook SJ . (2007b). Bim and the pro-survival Bcl-2 proteins: opposites attract, ERK repels. Cell Cycle 6: 2236–2240.

    Article  CAS  PubMed  Google Scholar 

  • Frese KK, Tuveson DA . (2007). Maximising mouse cancer models. Nat Rev Cancer 7: 645–658.

    Article  CAS  PubMed  Google Scholar 

  • Gilley J, Coffer PJ, Ham J . (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162: 613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Somwar R, Politi K, Balak M, Chmielecki J, Jiang X et al. (2007). Induction of BIM Is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med 4: e294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, McMahon AP . (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244: 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  • Hüser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S et al. (2001). MEK kinase activity is not necessary for Raf-1 function. EMBO J 20: 1940–1951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene 23: 6292–6298.

    Article  CAS  PubMed  Google Scholar 

  • Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278: 18811–18816.

    Article  CAS  PubMed  Google Scholar 

  • Ley R, Ewings KE, Hadfield K, Cook SJ . (2005). Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 12: 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  • Ley R, Ewings KE, Hadfield K, Howes E, Balmanno K, Cook SJ . (2004). Extracellular signal-regulated kinases 1/2 are serum-stimulated ‘BimEL kinases’ that bind to the BH3-only protein BimEL causing its phosphorylation and turnover. J Biol Chem 279: 8837–8847.

    Article  CAS  PubMed  Google Scholar 

  • Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G et al. (2003). Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22: 6785–6793.

    Article  CAS  PubMed  Google Scholar 

  • Marani M, Hancock D, Lopes R, Tenev T, Downward J, Lemoine NR . (2004). Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 23: 2431–2441.

    Article  CAS  PubMed  Google Scholar 

  • Mercer K, Giblett S, Green S, Lloyd D, DaRocha Dias S, Plumb M et al. (2005). Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res 65: 11493–11500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer KE, Pritchard CA . (2003). Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 1653: 25–40.

    CAS  PubMed  Google Scholar 

  • Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE . (2002). Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418: 934.

    Article  CAS  PubMed  Google Scholar 

  • Reginato MJ, Mills KR, Becker EB, Lynch DK, Bonni A, Muthuswamy SK et al. (2005). Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25: 4591–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaduto Jr RC, Grotyohann LW . (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76: 469–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. (2005). Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24: 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  • Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR et al. (2004). ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene 23: 3284–3295.

    Article  CAS  PubMed  Google Scholar 

  • Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5: 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace EM, Lyssikatos J, Blake JF, Seo J, Yang HW, Yeh TC et al. (2006). Potent and selective mitogen-activated protein kinase kinase (MEK) 1,2 inhibitors. 1.4-(4-bromo-2-fluorophenylamino)-1-methylpyridin-2(1H)-ones. J Med Chem 49: 441–444.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein IB . (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297: 63–64.

    Article  CAS  PubMed  Google Scholar 

  • Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R et al. (2003). Activation of ERK1/2 by ΔRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22: 1281–1293.

    Article  CAS  PubMed  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315: 856–859.

    Article  CAS  PubMed  Google Scholar 

  • Wiznerowicz M, Trono D . (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C et al. (2002). Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62: 6451–6455.

    CAS  PubMed  Google Scholar 

  • Zantl N, Weirich G, Zall H, Seiffert BM, Fischer SF, Kirschnek S et al. (2007). Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 26: 7038–7048.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the SJC and CAP labs for discussions and Richard Marais for his advice and encouragement. We particularly thank the Division of Biomedical Services at Leicester for help with breeding and Susan Giblett for isolation of MEFs. We are grateful to the Trono lab for provision of lentiviral expression systems, Paul Smith (AstraZeneca) for provision of AZD6244 and discussions and Richard Hamelin for provision of CO115 cells. Work in the CAP lab was funded by a CRUK programme grant number C1362/A6969. Work in the SJC lab was supported by the Association for International Cancer Research (AICR), AstraZeneca, BBSRC (BB/E02162X/1) and the Babraham Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C A Pritchard or S J Cook.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickenden, J., Jin, H., Johnson, M. et al. Colorectal cancer cells with the BRAFV600E mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM. Oncogene 27, 7150–7161 (2008). https://doi.org/10.1038/onc.2008.335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.335

Keywords

This article is cited by

Search

Quick links