Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional regulation of cell polarity in EMT and cancer

Abstract

The epithelial-to-mesenchymal transition (EMT) is a crucial process in tumour progression providing tumour cells with the ability to escape from the primary tumour, to migrate to distant regions and to invade tissues. EMT requires a loss of cell–cell adhesion and apical–basal polarity, as well as the acquisition of a fibroblastoid motile phenotype. Several transcription factors have emerged in recent years that induce EMT, with important implications for tumour progression. However, their effects on cell polarity remain unclear. Here, we have re-examined the data available related to the effect of EMT related transcription factors on epithelial cell plasticity, focusing on their impact on cell polarity. Transcriptional and post-transcriptional regulatory mechanisms mediated by several inducers of EMT, in particular the ZEB and Snail factors, downregulate the expression and/or functional organization of core polarity complexes. We also summarize data on the expression of cell polarity genes in human tumours and analyse genetic interactions that highlight the existence of complex regulatory networks converging on the regulation of cell polarity by EMT inducers in human breast carcinomas. These recent observations provide new insights into the relationship between alterations in cell polarity components and EMT in cancer, opening new avenues for their potential use as therapeutic targets to prevent tumour progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aigner K, Dampier B, Descovich LM, Mikula M, Sultan A, Schreiber M et al. (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26: 6979–6988.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JM, Van Itallie CM, Fanning AS . (2004). Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16: 140–145.

    CAS  PubMed  Google Scholar 

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    CAS  PubMed  Google Scholar 

  • Aranda V, Nolan ME, Muthuswamy SK . (2008). Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27: 6878–6887.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D . (2008). Polarity complex proteins. Biochim Biophys Acta 1778: 614–630.

    CAS  PubMed  Google Scholar 

  • Baas AF, Smit L, Clevers H . (2004). LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 14: 312–319.

    CAS  PubMed  Google Scholar 

  • Barrallo-Gimeno A, Nieto M . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    CAS  PubMed  Google Scholar 

  • Beltran M, Puig I, Peña C, García J, Alvarez A, Peña R et al. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22: 756–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo-Rodríguez C, Pérez-Caro M, Pérez-Mancera P, Sánchez-Beato M, Piris M, Sánchez-García I . (2006). Mouse cDNA microarray analysis uncovers Slug targets in mouse embryonic fibroblasts. Genomics 87: 113–118.

    PubMed  Google Scholar 

  • Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ . (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5: 899–904.

    CAS  PubMed  Google Scholar 

  • Boussioutas A, Li H, Liu J, Waring P, Lade S, Holloway AJ et al. (2003). Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res 63: 2569–2577.

    CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . (2005). Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5: 744–749.

    CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9: 582–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobaleda C, Perez-Caro M, Vicente-Duenas C, Sanchez-Garcia I . (2007). Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet 41: 41–61.

    CAS  PubMed  Google Scholar 

  • Contreras CM, Gurumurthy S, Haynie JM, Shirley LJ, Akbay EA, Wingo SN et al. (2008). Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68: 759–766.

    CAS  PubMed  Google Scholar 

  • Christiansen J, Rajasekaran A . (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66: 8319–8326.

    CAS  PubMed  Google Scholar 

  • Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH . (2007). miR-200b mediates post-transcriptional repression of ZFHX1B. Rna 13: 1172–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G . (2005b). The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65: 6237–6244.

    CAS  PubMed  Google Scholar 

  • De Craene B, van Roy F, Berx G . (2005a). Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17: 535–547.

    CAS  PubMed  Google Scholar 

  • Dow L, Humbert P . (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. Int Rev Cytol 262: 253–302.

    CAS  PubMed  Google Scholar 

  • Ebnet K . (2008). Organization of multiprotein complexes at cell–cell junctions. Histochem Cell Biol 130: 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escrivà M, Peiró S, Herranz N, Villagrasa P, Dave N, Montserrat-Sentís B et al. (2008). Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Moll Cell Biol 28: 1528–1540.

    Google Scholar 

  • Etienne-Manneville S . (2008). Polarity proteins in migration and invasion. Oncogene 27: 6970–6980.

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    CAS  PubMed  Google Scholar 

  • Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . (2006). Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 119: 1285–1290.

    CAS  PubMed  Google Scholar 

  • Goldstein B, Macara IG . (2007). The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13: 609–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gosens I, den Hollander AI, Cremers FP, Roepman R . (2008). Composition and function of the Crumbs protein complex in the mammalian retina. Exp Eye Res 86: 713–726.

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targetin ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    CAS  PubMed  Google Scholar 

  • Grotegut S, von Schweinitz D, Christofori G, Lehembre F . (2006). Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25: 3534–3545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grünert S, Jechlinger M, Beug H . (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657–665.

    PubMed  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    CAS  PubMed  Google Scholar 

  • Gupta A, Massagué J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    CAS  PubMed  Google Scholar 

  • Hanada N, Makino K, Koga H, Morisaki T, Kuwahara H, Masuko N et al. (2000). NE-dlg, a mammalian homolog of Drosophila dlg tumor suppressor, induces growth suppression and impairment of cell adhesion: possible involvement of down-regulation of beta-catenin by NE-dlg expression. Int J Cancer 86: 480–488.

    CAS  PubMed  Google Scholar 

  • Hartsock A, Nelson WJ . (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778: 660–669.

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ . (2004). MicroRNA: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522–532.

    CAS  PubMed  Google Scholar 

  • Hirohashi S, Kanai Y . (2003). Cell adhesion system and human cancer morphogenesis. Cancer Sci 94: 575–581.

    CAS  PubMed  Google Scholar 

  • Huber M, Kraut N, Beug H . (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    CAS  PubMed  Google Scholar 

  • Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE . (2008). Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27: 6888–6907.

    CAS  PubMed  Google Scholar 

  • Hurteau GJ, Carlson JA, Spivack SD, Brock GJ . (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67: 7972–7976.

    CAS  PubMed  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S . (2003). Regulation of tight junctions during the epithelium–mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116: 1959–1967.

    CAS  PubMed  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS . (2008). Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27: 6920–6929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordà M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A et al. (2005). Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118: 3371–3385.

    PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS . (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    CAS  PubMed  Google Scholar 

  • Knust E, Bossinger O . (2002). Composition and formation of intercellular junctions in epithelial cells. Science 298: 1955–1959.

    CAS  PubMed  Google Scholar 

  • Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, Suzuki H et al. (2004). A role for Id in the regulation of TGF-beta-induced epithelial–mesenchymal transdifferentiation. Cell Death Differ 11: 1092–1101.

    CAS  PubMed  Google Scholar 

  • Korpal M, Lee E, Hu G, Kang Y . (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283: 14910–14914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S et al. (2006). Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25: 103–110.

    CAS  PubMed  Google Scholar 

  • Lee M, Vasioukhin V . (2008). Cell polarity and cancer—cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121: 1141–1150.

    CAS  PubMed  Google Scholar 

  • Liu LX, Liu ZH, Jiang HC, Qu X, Zhang WH, Wu LF et al. (2002). Profiling of differentially expressed genes in human Gastric carcinoma by cDNA expression array. World J Gastroenterol 8: 580–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA . (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682–688.

    CAS  PubMed  Google Scholar 

  • Ma X, Wang Z, Ryan P, Isakoff S . (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5: 607–616.

    CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N et al. (2007). Mesenchyme forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104: 10069–10074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V et al. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128: 383–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Estrada O, Cullerés A, Soriano F, Peinado H, Bolós V, Martínez F et al. (2006). The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 394: 449–457.

    PubMed  PubMed Central  Google Scholar 

  • Moreno-Bueno G, Cubillo E, Sarrió D, Peinado H, Rodríguez-Pinilla S, Villa S et al. (2006). Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 66: 9543–9556.

    CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH . (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98: 1512–1520.

    CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niessen CM. . (2007). Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127: 2525–2532.

    CAS  PubMed  Google Scholar 

  • Nollet F, Kools P, van Roy F . (2000). Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299: 551–572.

    CAS  PubMed  Google Scholar 

  • Ohkubo T, Ozawa M . (2004). The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117: 1675–1685.

    CAS  PubMed  Google Scholar 

  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL . (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603–1609.

    CAS  PubMed  Google Scholar 

  • Park S, Gaur A, Lengyel E, Peter M . (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22: 894–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Moreno-Bueno G, Hardisson D, Pérez-Gómez E, Santos V, Mendiola M et al. (2008). Lysyl oxidase-like2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res 68: 4541–4550.

    CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    CAS  PubMed  Google Scholar 

  • Peinado H, Portillo F, Cano A . (2004). Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48: 365–375.

    CAS  PubMed  Google Scholar 

  • Peinado H, Quintanilla M, Cano A . (2003). Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278: 21113–21123.

    CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Fuchs E . (2006). Catenins: keeping cells from getting their signals crossed. Dev Cell 11: 601–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Moreno M, Jamora C, Fuchs E . (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112: 535–548.

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    CAS  PubMed  Google Scholar 

  • Richard M, Roepman R, Aartsen WM, van Rossum AG, den Hollander AI, Knust E et al. (2006). Towards understanding CRUMBS function in retinal dystrophies. Hum Mol Genet 15: R235–R243.

    CAS  PubMed  Google Scholar 

  • Scheel C, Onder T, Karnoub A, Weinberg R . (2007). Adaptation versus selection: the origins of metastatic behavior. Cancer Res 67: 11476–11479.

    CAS  PubMed  Google Scholar 

  • Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC et al. (2005). Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 24: 3100–3109.

    CAS  PubMed  Google Scholar 

  • Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131: 830–840.

    CAS  PubMed  Google Scholar 

  • Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68: 537–544.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S . (2006). The PAR-aPKC system: lessons in polarity. J Cell Sci 119: 979–987.

    CAS  PubMed  Google Scholar 

  • Talmadge J . (2007). Clonal selection of metastasis within the life history of a tumor. Cancer Res 67: 11471–11475.

    CAS  PubMed  Google Scholar 

  • Tarin D, Thompson E, Newgreen D . (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65: 5996–6000.

    CAS  PubMed  Google Scholar 

  • Thiery J . (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.

    CAS  PubMed  Google Scholar 

  • Thiery J, Sleeman J . (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    CAS  PubMed  Google Scholar 

  • Thompson E, Newgreen D, Tarin D . (2005). Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res 65: 5991–5995.

    CAS  PubMed  Google Scholar 

  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A . (2006). Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol 174: 175–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Furuse M, Itoh M . (1997). Molecular architecture of tight junctions: occludin and ZO-1. Soc Gen Physiol Ser 52: 69–76.

    CAS  PubMed  Google Scholar 

  • Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Nagasaka K et al. (2007). Loss of Hugl-1 expression associates with lymph node metastasis in endometrial cancer. Oncol Res 16: 431–435.

    CAS  PubMed  Google Scholar 

  • Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al. (2005). SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33: 6566–6578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van't Veer LJ, Dai H, van de Vijver M, He Y, Hart A, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    CAS  Google Scholar 

  • Vasioukhin V . (2006). Lethal giant puzzle of Lgl. Dev Neurosci 28: 13–24.

    CAS  PubMed  Google Scholar 

  • Vega S, Morales A, Ocaña O, Valdés F, Fabregat I, Nieto M . (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Nie J, Zhou Q, Liu W, Zhu F, Chen W et al. (2008). Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim Biophys Acta 1782: 51–59.

    CAS  PubMed  Google Scholar 

  • Whiteman E, Liu C, Fearon E, Margolis B . (2008). The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 27: 3875–3879.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wodarz A, Nathke I . (2007). Cell polarity in development and cancer. Nat Cell Biol 9: 1016–1024.

    CAS  PubMed  Google Scholar 

  • Zallen JA . (2007). Planar polarity and tissue morphogenesis. Cell 129: 1051–1063.

    CAS  PubMed  Google Scholar 

  • Zavadil J, Bottinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    CAS  PubMed  Google Scholar 

  • Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI . (2008). The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68: 740–748.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of A Cano's laboratory for their excellent work and encouraging discussions, and Gonzalo Gomez (CNIO, Spain) for helping with the protein network analysis. Our work is supported by grants from the Spanish Ministry of Education and Science (SAF2007-63051, NAN2004-09230-C04 and CONSOLIDER-INGENIO 2010 CSD2007-00017 to AC, and SAF2007-63075 to GMB), the EU (MRTN-CT-2004-005428) to AC and from the Fundación Mutua Madrileña (2006) to GMB. GMB is a junior researcher contracted on the Ramon y Cajal program, 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Cano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Bueno, G., Portillo, F. & Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27, 6958–6969 (2008). https://doi.org/10.1038/onc.2008.346

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.346

Keywords

This article is cited by

Search

Quick links