Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E2f3a and E2f3b make overlapping but different contributions to total E2f3 activity

Abstract

The E2f transcription factors are key downstream targets of the retinoblastoma protein tumor suppressor that control cell proliferation. E2F3 has garnered particular attention because it is amplified in various human tumors. E2f3 mutant mice typically die around birth and E2f3-deficient cells have a proliferation defect that correlates with impaired E2f target gene activation and also induction of p19Arf and p53. The E2f3 locus encodes two isoforms, E2f3a and E2f3b, which differ in their N-termini. However, it is unclear how E2f3a versus E2f3b contributes to E2f3's requirement in either proliferation or development. To address this, we use E2f3a- and E2f3b-specific knockouts. We show that inactivation of E2f3a results in a low penetrance proliferation defect in vitro whereas loss of E2f3b has no effect. This proliferation defect appears insufficient to disrupt normal development as E2f3a and E2f3b mutant mice are both fully viable and have no detectable defects. However, when combined with E2f1 mutation, inactivation of E2f3a, but not E2f3b, causes significant proliferation defects in vitro, neonatal lethality and also a striking cartilage defect. Thus, we conclude that E2f3a and E2f3b have largely overlapping functions in vivo and that E2f3a can fully substitute for E2f1 and E2f3 in most murine tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams MR, Sears R, Nuckolls F, Leone G, Nevins JR . (2000). Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol Cell Biol 20: 3633–3639.

    Article  CAS  Google Scholar 

  • Aslanian A, Iaquinta PJ, Verona R, Lees JA . (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev 18: 1413–1422.

    Article  CAS  Google Scholar 

  • Attwooll C, Lazzerini Denchi E, Helin K . (2004). The E2F family: specific functions and overlapping interests. EMBO J 23: 4709–4716.

    Article  CAS  Google Scholar 

  • Berthet C, Kaldis P . (2007). Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26: 4469–4477.

    Article  CAS  Google Scholar 

  • Blais A, Dynlacht BD . (2007). E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 19: 658–662.

    Article  CAS  Google Scholar 

  • Cloud JE, Rogers C, Reza TL, Ziebold U, Stone JR, Picard MH et al. (2002). Mutant mouse models reveal the relative roles of E2F1 and E2F3 in vivo. Mol Cell Biol 22: 2663–2672.

    Article  CAS  Google Scholar 

  • Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A et al. (2006). Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 54: 155–162.

    Article  Google Scholar 

  • Courel M, Friesenhahn L, Lees JA . (2008). E2f6 and Bmi1 cooperate in axial skeletal development. Dev Dyn 237: 1232–1242.

    Article  CAS  Google Scholar 

  • Danielian PS, Bender Kim CF, Caron AM, Vasile E, Bronson RT, Lees JA . (2007). E2f4 is required for normal development of the airway epithelium. Dev Biol 305: 564–576.

    Article  CAS  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  Google Scholar 

  • Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A et al. (2004). Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23: 1627–1630.

    Article  CAS  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, Livingston DM et al. (1996). E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85: 549–561.

    Article  CAS  Google Scholar 

  • Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A et al. (2004). Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23: 5871–5879.

    Article  CAS  Google Scholar 

  • He Y, Armanious MK, Thomas MJ, Cress WD . (2000). Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Oncogene 19: 3422–3433.

    Article  CAS  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA . (2000). E2f3 is critical for normal cellular proliferation. Genes Dev 14: 690–703.

    CAS  Google Scholar 

  • Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA . (2008). Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 27: 2716–2727.

    Article  CAS  Google Scholar 

  • Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ et al. (2003). Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459–5470.

    Article  CAS  Google Scholar 

  • Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L et al. (2000). Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 20: 3626–3632.

    Article  CAS  Google Scholar 

  • Oeggerli M, Schraml P, Ruiz C, Bloch M, Novotny H, Mirlacher M et al. (2006). E2F3 is the main target gene of the 6p22 amplicon with high specificity for human bladder cancer. Oncogene 25: 6538–6543.

    Article  CAS  Google Scholar 

  • Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R et al. (2004). E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23: 5616–5623.

    Article  CAS  Google Scholar 

  • Orlic M, Spencer CE, Wang L, Gallie BL . (2006). Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer 45: 72–82.

    Article  CAS  Google Scholar 

  • Parisi T, Yuan TL, Faust AM, Caron AM, Bronson R, Lees JA . (2007). Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol Cell Biol 27: 2283–2293.

    Article  CAS  Google Scholar 

  • Sharma N, Timmers C, Trikha P, Saavedra HI, Obery A, Leone G . (2006). Control of the p53-p21CIP1 Axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J Biol Chem 281: 36124–36131.

    Article  CAS  Google Scholar 

  • Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J et al. (2007). E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27: 65–78.

    Article  CAS  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  Google Scholar 

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  Google Scholar 

  • Ziebold U, Lee EY, Bronson RT, Lees JA . (2003). E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas. Mol Cell Biol 23: 6542–6552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Aurora Burds Connor and the MIT Fannie E Rippel transgenic facility; the KI Flow Cytometry facility for technical assistance; Donald Court, Neal Copeland, Nancy Jenkins and Lili Yamasaki for reagents and mouse strains and Keara Lane, Daniel Garcia, GuangJun Zhang and Lees laboratory members for helpful suggestions. This work was supported by an NIH grant to JAL (CA118757). JAL is a Ludwig Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Lees.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielian, P., Friesenhahn, L., Faust, A. et al. E2f3a and E2f3b make overlapping but different contributions to total E2f3 activity. Oncogene 27, 6561–6570 (2008). https://doi.org/10.1038/onc.2008.253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.253

Keywords

This article is cited by

Search

Quick links