Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The p53 family and programmed cell death

Abstract

The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologs, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, whereas in this review, we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein–protein interactions that influence this decision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W . (2007). FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282: 1797–1804.

    Article  CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399: 809–813.

    Article  CAS  PubMed  Google Scholar 

  • Bargonetti J, Manfredi JJ . (2002). Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14: 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Totty NF, Irwin MS, Sudol M, Downward J . (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11: 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P . (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282: 290–293.

    Article  CAS  PubMed  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003a). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.

    Article  CAS  PubMed  Google Scholar 

  • Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X . (2004). ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol 24: 1341–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh JK et al. (2003b). iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet 33: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhram-Mahadeo VS, Bowen S, Lee S, Perez-Sanchez C, Ensor E, Morris PJ et al. (2006). Brn-3b enhances the pro-apoptotic effects of p53 but not its induction of cell cycle arrest by cooperating in trans-activation of bax expression. Nucleic Acids Res 34: 6640–6652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caelles C, Helmberg A, Karin M . (1994). p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223.

    Article  CAS  PubMed  Google Scholar 

  • Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M et al. (2006). p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10: 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T et al. (2006). Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26: 6859–6869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ko LJ, Jayaraman L, Prives C . (1996). p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10: 2438–2451.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zheng Y, Zhu J, Jiang J, Wang J . (2001). p73 is transcriptionally regulated by DNA damage, p53, and p73. Oncogene 20: 769–774.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR . (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309: 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  • Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H et al. (2004). Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 64: 2449–2460.

    Article  CAS  PubMed  Google Scholar 

  • Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 59: 3352–3356.

    CAS  PubMed  Google Scholar 

  • Cory S, Adams JM . (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. (2002). DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9: 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA et al. (2007). Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130: 624–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deyoung MP, Ellisen LW . (2007). p63 and p73 in human cancer: defining the network. Oncogene 26: 5169–5183.

    Article  CAS  PubMed  Google Scholar 

  • DeYoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW . (2006). Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 66: 9362–9368.

    Article  CAS  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Stefano V, Soddu S, Sacchi A, D’Orazi G . (2005). Oncogene 24: 5431–5442.

    Article  CAS  PubMed  Google Scholar 

  • Dietz S, Rother K, Bamberger C, Schmale H, Mössner J, Engeland K . (2002). Differential regulation of transcription and induction of programmed cell death by human p53-family members p63 and p73. FEBS Lett 525: 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J et al. (2000). Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275: 38905–38911.

    Article  CAS  PubMed  Google Scholar 

  • Ding HF, McGill G, Rowan S, Schmaltz C, Shimamura A, Fisher DE . (1998). Oncogene-dependent regulation of caspase activation by p53 protein in a cell-free system. J Biol Chem 273: 28378–28383.

    Article  CAS  PubMed  Google Scholar 

  • Dohn M, Zhang S, Chen X . (2001). p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20: 3193–3205.

    Article  CAS  PubMed  Google Scholar 

  • DomĂ­nguez G, GarcĂ­a JM, Peña C, Silva J, GarcĂ­a V, MartĂ­nez L et al. (2006). DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 24: 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Dumont P, Leu JI, Della Pietra III AC, George DL, Murphy M. . (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33: 357–365.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Erster S, Mihara M, Kim RH, Petrenko O, Moll UM . (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24: 6728–6741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Hollstein M, Xu Y . (2006). Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5: 2812–2819.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Fridman JS, Lowe SW . (2003). Control of apoptosis by p53. Oncogene 22: 9030–9040.

    Article  CAS  PubMed  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J . (1996). POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci USA 93: 3920–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Tsuchida N . (1999). Activation of caspases in p53-induced transactivation-independent apoptosis. Jpn J Cancer Res 90: 180–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. (1999). The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H et al. (2005). TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24: 2458–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, LĂĽthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE . (2008). SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2: 241–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupt Y, Rowan S, Shaulian E, Kazaz A, Vousden K, Oren M . (1997). p53 mediated apoptosis in HeLa cells: transcription dependent and independent mechanisms. Leukemia 11: 337–339.

    PubMed  Google Scholar 

  • Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M . (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9: 2170–2183.

    Article  CAS  PubMed  Google Scholar 

  • Helton ES, Zhang J, Chen X . (2008). The proline-rich domain in p63 is necessary for the transcriptional and apoptosis-inducing activities of TAp63. Oncogene 27: 2843–2850.

    Article  CAS  PubMed  Google Scholar 

  • Hudson CD, Morris PJ, Latchman DS, Budhram-Mahadeo VS . (2005). Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. J Biol Chem 280: 11851–11858.

    Article  CAS  PubMed  Google Scholar 

  • Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT et al. (2005). Perp is a p63-regulated gene essential for epithelial integrity. Cell 120: 843–856.

    Article  CAS  PubMed  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Kaelin WG . (2001). p53 family update: p73 and p63 develop their own identities. Cell Growth Differ 12: 337–349.

    CAS  PubMed  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Hammond EM, Giaccia A, Attardi LD . (2005). The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 37: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Meade K, Pathak N, Marques MR, Attardi LD . (2008). Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence. Proc Natl Acad Sci USA 105: 1215–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin Jr WG . (1999). The p53 gene family. Oncogene 18: 7701–7705.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kartasheva NN, Contente A, Lenz-Stöppler C, Roth J, Dobbelstein M . (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 21: 4715–4727.

    Article  CAS  PubMed  Google Scholar 

  • Katoh I, Aisaki KI, Kurata SI, Ikawa S, Ikawa Y . (2000). p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 19: 3126–3130.

    Article  CAS  PubMed  Google Scholar 

  • Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H et al. (1999). Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94: 1113–1120.

    CAS  PubMed  Google Scholar 

  • Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM et al. (2006). p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 103: 8435–8440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA . (2008). p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19: 1986–1999.

    Article  CAS  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173: 533–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga F, Kawakami S, Fujii Y, Saito K, Ohtsuka Y, Iwai A et al. (2003). Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 9: 5501–5507.

    CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E et al. (2006). E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127: 775–788.

    Article  CAS  PubMed  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nat Cell Biol 6: 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Adamovich Y, Reuven N, Shaul Y . (2007). The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ 14: 743–751.

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Adamovich Y, Reuven N, Shaul Y . (2008). Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 29: 350–361.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA dama. Mol Cell Biol 19: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M . (2001). Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20: 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Malkin D, Jolly KW, Barbier N, Look AT, Friend SH, Gebhardt MC et al. (1992). Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 326: 1309–1315.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani F, Piazza S, Gostissa M, Strano S, Zacchi P, Mantovani R et al. (2004). Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 14: 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14: 912–920.

    Article  CAS  PubMed  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM . (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26: 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchenko ND, Zaika A, Moll UM . (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275: 16202–16212.

    Article  CAS  PubMed  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25: 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M et al. (2004). p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH . (2002). p73: friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA . (2003). Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28: 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Michalak EM, Villunger A, Adams JM, Strasser A . (2008). In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 15: 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  • MĂĽller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H et al. (2005). TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12: 1564–1577.

    Article  PubMed  CAS  Google Scholar 

  • MĂĽller M, Schleithoff ES, Stremmel W, Melino G, Krammer PH, Schilling T . (2006). One, two, three—p53, p63, p73 and chemosensitivity. Drug Resist Updat 9: 288–306.

    Article  PubMed  CAS  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC . (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13: 962–972.

    Article  CAS  PubMed  Google Scholar 

  • Nemajerova A, Wolff S, Petrenko O, Moll UM . (2005). Viral and cellular oncogenes induce rapid mitochondrial translocation of p53 in primary epithelial and endothelial cells early in apoptosis. FEBS Lett 579: 6079–6083.

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Osada M, Kurata S, Sato S, Aisaki K, Kageyama Y et al. (2002). p53 gene family p51(p63)-encoded, secondary transactivator p51B(TAp63alpha) occurs without forming an immunoprecipitable complex with MDM2, but responds to genotoxic stress by accumulation. Exp Cell Res 276: 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Manzl C, Strasser A, Villunger A . (2007). How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14: 1561–1575.

    Article  CAS  PubMed  Google Scholar 

  • Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I et al. (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Palacios G, Moll UM . (2006). Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene 25: 6133–6139.

    Article  CAS  PubMed  Google Scholar 

  • Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60: 3370–3374.

    CAS  PubMed  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C et al. (2008). Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis 29: 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesik SW . (2004). Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett 559: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Pietsch EC, Perchiniak E, Canutescu AA, Wang G, Dunbrack RL, Murphy ME . (2008). Oligomerization of bak by p53 utilizes conserved residues of the p53 DNA binding domain. J Biol Chem 283: 21294–21304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. (2007). MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25: 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S et al. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8: 781–794.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM, Gutkind JS . (2002). Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 21: 974–979.

    Article  CAS  PubMed  Google Scholar 

  • Sansome C, Zaika A, Marchenko ND, Moll UM . (2001). Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488: 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM et al. (2008). p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 27: 4363–4372.

    Article  CAS  PubMed  Google Scholar 

  • Sayan BS, Sayan AE, Yang AL, Aqeilan RI, Candi E, Cohen GM et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proc Natl Acad Sci 104: 10871–10876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmale H, Bamberger C . (1997). A novel protein with strong homology to the tumor suppressor p53. Oncogene 15: 1363–1367.

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275: 7337–7342.

    Article  CAS  PubMed  Google Scholar 

  • Senoo M, Manis JP, Alt FW, McKeon F . (2004). p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6: 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Shaw PE . (2007). Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep 8: 40–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA . (2004). Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 114: 2063–2072.

    Article  CAS  PubMed  Google Scholar 

  • Sot B, Freund SM, Fersht AR . (2007). Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xl. J Biol Chem 282: 29193–29200.

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T, Theseling CC, PĂĽtzer BM . (2002). Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 277: 14177–14185.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E et al. (2005). The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 18: 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276: 15164–15173.

    Article  CAS  PubMed  Google Scholar 

  • Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I et al. (2006). Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2: 474–479.

    Article  CAS  PubMed  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K . (2007). DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25: 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Talos F, Petrenko O, Mena P, Moll UM . (2005). Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res 65: 9971–9981.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827–839.

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  • Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C et al. (2006). WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281: 8600–8606.

    Article  CAS  PubMed  Google Scholar 

  • Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D . (1998). A new human p53 homologue. Nat Med 4: 747–748.

    Article  PubMed  Google Scholar 

  • Urist MJ, Di Como CJ, Lu ML, Charytonowicz E, Verbel D, Crum CP et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 161: 1199–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, MĂĽllauer F, Böck G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Wager M, Guilhot J, Blanc JL, Ferrand S, Milin S, Bataille B et al. (2006). Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients. Br J Cancer 95: 1062–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner AJ, Kokontis JM, Hay N . (1994). Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8: 2817–2830.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu YX, Hande MP, Wong AC, Jin YJ, Yin Y . (2007). TAp73 is a downstream target of p53 in controlling the cellular defense against stress. J Biol Chem 282: 29152–29162.

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A . (2002). Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99: 22–28.

    Article  CAS  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Xu H, Kufe D . (2005). Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7: 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Welchman RL, Gordon C, Mayer RJ . (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA . (2003). The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay–Wells syndrome-derived mutations. Mol Cell Biol 23: 2264–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 63: 2351–2357.

    CAS  PubMed  Google Scholar 

  • Xiang M, Gan L, Zhou L, Klein WH, Nathans J . (1996). Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci USA 93: 11950–11955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Shay JW, Wright WE, Mumby MC . (1997). Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J Biol Chem 272: 15220–15226.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. (1999). p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399: 814–817.

    Article  CAS  PubMed  Google Scholar 

  • Zaika A, Irwin M, Sansome C, Moll UM . (2001). Oncogenes induce and activate endogenous p73 protein. J Biol Chem 276: 11310–11316.

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Li X, Miller A, Yuan Z, Yuan W, Kwok RP et al. (2000). The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol 20: 1299–12310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Zhu Y, Lu H . (2001). NBP is the p53 homolog p63. Carcinogenesis 22: 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al. (2002). The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419: 849–853.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S B McMahon or M E Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietsch, E., Sykes, S., McMahon, S. et al. The p53 family and programmed cell death. Oncogene 27, 6507–6521 (2008). https://doi.org/10.1038/onc.2008.315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.315

Keywords

This article is cited by

Search

Quick links