Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Complementing mutations in core binding factor leukemias: from mouse models to clinical applications

Abstract

A great proportion of acute myeloid leukemias (AMLs) display cytogenetic abnormalities including chromosomal aberrations and/or submicroscopic mutations. These abnormalities significantly influence the prognosis of the disease. Hence, a thorough genetic work-up is an essential constituent of standard diagnostic procedures. Core binding factor (CBF) leukemias denote AMLs with chromosomal aberrations disrupting one of the CBF transcription factor genes; the most common examples are translocation t(8;21) and inversion inv(16), which result in the generation of the AML1-ETO and CBFβ-MYH11 fusion proteins, respectively. However, in murine models, these alterations alone do not suffice to generate full-blown leukemia, but rather, complementary events are required. In fact, a substantial proportion of primary CBF leukemias display additional activating mutations, mostly of the receptor tyrosine kinase (RTK) c-KIT. The awareness of the impact and prognostic relevance of these ‘second hits’ is increasing with a wider range of mutations tested in clinical trials. Furthermore, novel agents targeting RTKs are emanating rapidly and entering therapeutic regimens. Here, we present a concise review on complementing mutations in CBF leukemias including pathophysiology, mouse models, and clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adya N, Stacy T, Speck NA, Liu PP . (1998). The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates. Mol Cell Biol 18: 7432–7443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcalay M, Orleth A, Sebastiani C, Meani N, Chiaradonna F, Casciari C et al. (2001). Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 20: 5680–5694.

    CAS  PubMed  Google Scholar 

  • Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S . (2006). Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107: 3847–3853.

    CAS  PubMed  Google Scholar 

  • Baer MR, Stewart CC, Lawrence D, Arthur DC, Byrd JC, Davey FR et al. (1997). Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 190: 1643–1648.

    Google Scholar 

  • Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. (2000). C-kit mutations in core binding factor leukemias. Blood 95: 726–727.

    CAS  PubMed  Google Scholar 

  • Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. (2004). KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 89: 920–925.

    CAS  PubMed  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. (1985). Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 103: 620–625.

    CAS  PubMed  Google Scholar 

  • Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. (2006). Acute Leukemia French Association (ALFA); Leucemies Aigues Myeloblastiques de l’Enfant (LAME) Cooperative Groups. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20: 965–970.

    CAS  PubMed  Google Scholar 

  • Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ et al. (2005). RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106: 2113–2119.

    CAS  PubMed  Google Scholar 

  • Buchholz F, Refaeli Y, Trumpp A, Bishop JM . (2000). Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 1: 133–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burel SA, Harakawa N, Zhou L, Pabst T, Tenen DG, Zhang DE . (2001). Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol 21: 5577–5590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. (2002). Cancer and Leukemia Group B (CALGB 8461). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  • Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. (2006). Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107: 3463–3468.

    CAS  PubMed  Google Scholar 

  • Cairoli R, Grillo G, Beghini A, Tedeschi A, Ripamonti CB, Larizza L et al. (2003). C-Kit point mutations in core binding factor leukemias: correlation with white blood cell count and the white blood cell index. Leukemia 17: 471–472.

    CAS  PubMed  Google Scholar 

  • Calabi F, Pannell R, Pavloska G . (2001). Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol 21: 5658–5666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron S, Taylor DS, TePas EC, Speck NA, Mathey-Prevot B . (1994). Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting. Blood 83: 2851–2859.

    CAS  PubMed  Google Scholar 

  • Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al. (2003). Incidience and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121: 775–777.

    CAS  PubMed  Google Scholar 

  • Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. (1999). The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23: 144–146.

    CAS  PubMed  Google Scholar 

  • Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S et al. (2004). Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci 101: 4924–4929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. (1996). Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 87: 687–696.

    CAS  PubMed  Google Scholar 

  • Chan EM, Comer EM, Brown FC, Richkind KE, Holmes ML, Chong BH et al. (2005). AML1-FOG2 fusion protein in myelodysplasia. Blood 105: 4523–4526.

    CAS  PubMed  Google Scholar 

  • Chinen Y, Taki T, Nishida K, Shimizu D, Okuda T, Yoshida N et al. (2008). Identification of the novel AML1 fusion partner gene, LAF4, a fusion partner of MLL, in childhood T-cell acute lymphoblastic leukemia with t(2;21)(q11;q22) by bubble PCR method for cDNA. Oncogene 27: 2249–2256.

    CAS  PubMed  Google Scholar 

  • Costello R, Sainty D, Lecine P, Cusenier A, Mozziconacci MJ, Arnoulet C et al. (1997). Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia 11: 644–650.

    CAS  PubMed  Google Scholar 

  • de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22: 5506–5517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Döhner K, Du J, Corbacioglu A, Scholl C, Schlenk RF, Döhner H . (2006). JAK2V617F mutations as cooperative genetic lesions in t(8;21)-positive acute myeloid leukemia. Haematologica 91: 1569–1570.

    PubMed  Google Scholar 

  • Downing JR . (1999). The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 106: 296–308.

    CAS  PubMed  Google Scholar 

  • Elsässer A, Franzen M, Kohlmann A, Weisser M, Schnittger S, Schoch C et al. (2003). The fusion protein AML1-ETO in acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner. Oncogene 22: 5646–5657.

    PubMed  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  • Fenske TS, Pengue G, Mathews V, Hanson PT, Hamm SE, Riaz N et al. (2004). Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA 101: 15184–15189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y et al. (1998). The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91: 4028–4037.

    CAS  PubMed  Google Scholar 

  • Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D et al. (1999). c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 105: 894–900.

    CAS  PubMed  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185–7191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. (2005). Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19: 1536–1542.

    CAS  PubMed  Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4917–4921.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  • Grisolano JL, O’Neal J, Cain J, Tomasson MH . (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 100: 9506–9511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1: 63–74.

    CAS  PubMed  Google Scholar 

  • Hromas R, Busse T, Carroll A, Mack D, Shopnick R, Zhang DE et al. (2001). Fusion AML1 transcript in a radiation-associated leukemia results in a truncated inhibitory AML1 protein. Blood 97: 2168–2170.

    CAS  PubMed  Google Scholar 

  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y . (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 20: 723–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Illmer T, Schaich M, Ehninger G, Thiede C, DSIL2003 AML study group. (2007). Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. Haematologica 92: 137–138.

    PubMed  Google Scholar 

  • Kanno Y, Kanno T, Sakakura C, Bae SC, Ito Y . (1998). Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor alpha (CBFalpha) subunit by the leukemia-related PEBP2/CBFbeta-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation. Mol Cell Biol 18: 4252–4261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LM, Gilliland DG . (2002). Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3: 179–198.

    CAS  PubMed  Google Scholar 

  • Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K et al. (1998). The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol 18: 846–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan SC, Lagasse E, Atwater S, Bae SC, Weissman I, Ito Y et al. (1998). The PEBP2betaMYH11 fusion created by Inv(16)(p13;q22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia. Proc Natl Acad Sci USA 95: 11863–11868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K . (2005). KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. Blood 105: 3319–3321.

    CAS  PubMed  Google Scholar 

  • Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. (2001). The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98: 1752–1759.

    CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Schnittger S, Look T, Gilliland G, Tenen D, Haferlach T et al. (2006). Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br J Haematol 134: 616–619.

    CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T, Schnittger S . (2005). Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol 130: 196–202.

    CAS  PubMed  Google Scholar 

  • Kundu M, Compton S, Garrett-Beal L, Stacy T, Starost MF, Eckhaus M et al. (2005). Runx1 deficiency predisposes mice to T-lymphoblastic lymphoma. Blood 106: 3621–3624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. (2006). Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9: 57–68.

    CAS  PubMed  Google Scholar 

  • Landrette SF, Kuo YH, Hensen K, Barjesteh van Waalwijk van Doorn-Khosrovani S, Perrat PN, Van de Ven WJ et al. (2005). Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood 105: 2900–2907.

    CAS  PubMed  Google Scholar 

  • Lasa A, Carricondo MT, Carnicer MJ, Perea G, Aventin A, Nomdedeu JF . (2006). A new D816 c-KIT gene mutation in refractory AML1-ETO leukemia. Haematologica 91: 1283–1284.

    CAS  PubMed  Google Scholar 

  • Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS et al. (2006). The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25: 1434–1436.

    CAS  PubMed  Google Scholar 

  • Li X, Xu YB, Wang Q, Lu Y, Zheng Y, Wang YC et al. (2006). Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML 1-ETO-induced growth arrest in leukemic cells. J Cell Physiol 208: 594–601.

    CAS  PubMed  Google Scholar 

  • Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261: 1041–1044.

    CAS  PubMed  Google Scholar 

  • Look AT . (1997). Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  • Lu Y, Xu YB, Yuan TT, Song MG, Lübbert M, Fliegauf M et al. (2006). Inducible expression of AML1-ETO fusion protein endows leukemic cells with susceptibility to extrinsic and intrinsic apoptosis. Leukemia 20: 987–993.

    CAS  PubMed  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR et al. (1998). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18: 7176–7184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO et al. (2005). Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 23: 5705–5717.

    PubMed  Google Scholar 

  • Marlton P, Claxton DF, Liu P, Estey EH, Beran M, LeBeau M et al. (1995). Molecular characterization of 16p deletions associated with inversion 16 defines the critical fusion for leukemogenesis. Blood 85: 772–779.

    CAS  PubMed  Google Scholar 

  • Merchant SH, Haines S, Hall B, Hozier J, Viswanatha DS . (2004). Fluorescence in situ hybridization identifies cryptic t(16;16)(p13;q22) masked by del(16)(q22) in a case of AML-M4 Eo. J Mol Diagn 6: 271–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW . (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13: 6336–6345.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Weissman IL, Akashi K . (2000). AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 97: 7521–7526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88: 10431–10434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monma F, Nishii K, Lorenzo V F, Usui E, Ueda Y, Watanabe Y et al. (2006). Molecular analysis of PDGFRalpha/beta genes in core binding factor leukemia with eosinophilia. Eur J Haematol 76: 18–22.

    CAS  PubMed  Google Scholar 

  • Moreno-Miralles I, Pan L, Keates-Baleeiro J, Durst-Goodwin K, Yang C, Kim HG et al. (2005). The inv(16) cooperates with ARF haploinsufficiency to induce acute myeloid leukemia. J Biol Chem 280: 40097–40103.

    CAS  PubMed  Google Scholar 

  • Mrozek K, Heerema NA, Bloomfield CD . (2004). Cytogenetics in acute leukemia. Blood Rev 18: 115–136.

    PubMed  Google Scholar 

  • Mrozek K, Prior TW, Edwards C, Marcucci G, Carroll AJ, Snyder PJ et al. (2001). Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 19: 2482–2492.

    CAS  PubMed  Google Scholar 

  • Nanri T, Matsuno N, Kawakita T, Suzushima H, Kawano F, Mitsuya H et al. (2005a). Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). Leukemia 19: 1361–1366.

    CAS  PubMed  Google Scholar 

  • Nanri T, Matsuno N, Kawakita T, Mitsuya H, Asou N . (2005b). Imatinib mesylate for refractory acute myeloblastic leukemia harboring inv(16) and a c-KIT exon 8 mutation. Leukemia 19: 1673–1675.

    CAS  PubMed  Google Scholar 

  • Nguyen S, Leblanc T, Fenaux P, Witz F, Blaise D, Pigneux A et al. (2002). A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood 99: 3517–3523.

    CAS  PubMed  Google Scholar 

  • Niki M, Okada H, Takano H, Kuno J, Tani K, Hibino H et al. (1997). Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci USA 94: 5697–5702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. (2006). AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 107: 3303–3312.

    CAS  PubMed  Google Scholar 

  • Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . (1994). PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558–5568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J et al. (1994). Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci USA 91: 4004–4008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nucifora G, Larson RA, Rowley JD . (1993). Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82: 712–715.

    CAS  PubMed  Google Scholar 

  • Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7: 444–451.

    CAS  PubMed  Google Scholar 

  • Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA et al. (2006). Cancer and Leukemia Group B. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24: 3904–3911.

    CAS  PubMed  Google Scholar 

  • Passegue E, Jamieson CH, Ailles LE, Weissman IL . (2003). Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100 (Suppl 1): 11842–11849.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson K, Bekassy AN, Olofsson T, Mitelman F, Johansson B, Panagopoulos I . (2006). A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42. Leukemia 20: 224–229.

    CAS  PubMed  Google Scholar 

  • Peterson LF, Yan M, Zhang DE . (2007). The p21waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 109: 4392–4398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson LF, Zhang DE . (2004). The 8;21 translocation in leukemogenesis. Oncogene 23: 4255–4262.

    CAS  PubMed  Google Scholar 

  • Ramsey H, Zhang DE, Richkind K, Burcoglu-O’Ral A, Hromas R . (2003). Fusion of AML1/Runx1 to copine VIII, a novel member of the copine family, in an aggressive acute myelogenous leukemia with t(12;21) translocation. Leukemia 17: 1665–1666.

    CAS  PubMed  Google Scholar 

  • Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  • Rochford JJ, Semple RK, Laudes M, Boyle KB, Christodoulides C, Mulligan C et al. (2004). ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. Mol Cell Biol 24: 9863–9872.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P et al. (1995). High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86: 4263–4269.

    CAS  PubMed  Google Scholar 

  • Roskoski Jr R . (2005). Structure and regulation of Kit protein-tyrosine kinase—the stem cell factor receptor. Biochem Biophys Res Commun 338: 1307–1315.

    CAS  PubMed  Google Scholar 

  • Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K et al. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci USA 93: 12359–12363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. (2005). The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115: 2159–2168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY et al. (2006). Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66: 473–481.

    CAS  PubMed  Google Scholar 

  • Schlenk RF, Benner A, Krauter J, Buchner T, Sauerland C, Ehninger G et al. (2004). Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 22: 3741–3750.

    CAS  PubMed  Google Scholar 

  • Schnittger S, Bacher U, Kern W, Haferlach C, Haferlach T . (2007a). JAK2 seems to be a typical cooperating mutation in therapy-related t(8;21)/AML1-ETO-positive AML. Leukemia 21: 183–184.

    CAS  PubMed  Google Scholar 

  • Schnittger S, Bacher U, Kern W, Haferlach T, Haferlach C . (2007b). JAK2V617F as progression marker in CMPD and as cooperative mutation in AML with trisomy 8 and t(8;21): a comparative study on 1103 CMPD and 269 AML cases. Leukemia 21: 1843–1845.

    CAS  PubMed  Google Scholar 

  • Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K et al. (2006). KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107: 1791–1799.

    CAS  PubMed  Google Scholar 

  • Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. (2002). Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100: 59–66.

    CAS  PubMed  Google Scholar 

  • Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196: 1227–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M et al. (2006). KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107: 1806–1809.

    CAS  PubMed  Google Scholar 

  • Shimada H, Ichikawa H, Nakamura S, Katsu R, Iwasa M, Kitabayashi I et al. (2000). Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 96: 655–663.

    CAS  PubMed  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  • Shurtleff SA, Meyers S, Hiebert SW, Raimondi SC, Head DR, Willman CL et al. (1995). Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 85: 3695–3703.

    CAS  PubMed  Google Scholar 

  • Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. (2000). Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  • Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. (2001). FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  • Sun W, Downing JR . (2004). Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors. Blood 104: 3565–3572.

    CAS  PubMed  Google Scholar 

  • Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104: 755–767.

    CAS  PubMed  Google Scholar 

  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. (2002). Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99: 4326–4335.

    CAS  PubMed  Google Scholar 

  • Valk PJ, Bowen DT, Frew ME, Goodeve AC, Lowenberg B, Reilly JT . (2004). Second hit mutations in the RTK/RAS signaling pathway in acute myeloid leukemia with inv(16). Haematologica 89: 106.

    CAS  PubMed  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 95: 10860–10865.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93: 3444–3449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87: 697–708.

    CAS  PubMed  Google Scholar 

  • Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX et al. (2005). AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 102: 1104–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X, Dicks BM et al. (2002). In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 99: 3801–3805.

    CAS  PubMed  Google Scholar 

  • Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A et al. (2004). Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 101: 17186–17191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12: 945–949.

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang W, Cleaves R, Zahurak M, Cheng L, Civin CI et al. (2002). Acceleration of G(1) cooperates with core binding factor beta-smooth muscle myosin heavy chain to induce acute leukemia in mice. Cancer Res 62: 2232–2235.

    CAS  PubMed  Google Scholar 

  • Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 15: 303–306.

    CAS  PubMed  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98: 10398–10403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM et al. (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16: 1231–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for outstanding support by the comments and remarks of both reviewers of this paper. This study was supported by the Deutsche Forschungsgemeinschaft (DFG), Germany (AM), the La Caixa Stiftung–Deutscher Akademischer Austauschdienst (DAAD), Germany (JD), and the German Jose-Carreras Leukemia Foundation (ML), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lübbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, A., Duque, J., Shizuru, J. et al. Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 27, 5759–5773 (2008). https://doi.org/10.1038/onc.2008.196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.196

Keywords

This article is cited by

Search

Quick links