Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Understanding PTEN regulation: PIP2, polarity and protein stability

Abstract

The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). Here, we discuss the concept of PTEN as an ‘interfacial enzyme’, which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P2 and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP3, which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP3 metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P2, may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adler CE, Fetter RD, Bargmann CI . (2006). UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci 9: 511–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn Y, Hwang CY, Lee SR, Kwon KS, Lee C . (2008). Tumor suppressor PTEN mediates a negative regulation of E3 ubiquitin-protein ligase Nedd4. Biochem J 412: 331–338.

    CAS  PubMed  Google Scholar 

  • Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T . (2005). Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem 280: 35195–35202.

    CAS  PubMed  Google Scholar 

  • Aoki K, Nakamura T, Fujikawa K, Matsuda M . (2005). Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells. Mol Biol Cell 16: 2207–2217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arevalo MA, Rodriguez-Tebar A . (2006). Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth. Mol Biol Cell 17: 3369–3377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura N, Kaibuchi K . (2007). Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8: 194–205.

    CAS  PubMed  Google Scholar 

  • Backers K, Blero D, Paternotte N, Zhang J, Erneux C . (2003). The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. Adv Enzyme Regul 43: 15–28.

    CAS  PubMed  Google Scholar 

  • Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, Rhee SG . (1998). Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 4465–4469.

    CAS  PubMed  Google Scholar 

  • Baker SJ . (2007). PTEN enters the nuclear age. Cell 128: 25–28.

    CAS  PubMed  Google Scholar 

  • Batty IH, Downes CP . (1996). Thrombin receptors modulate insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation in 1321N1 astrocytoma cells. Biochem J 317 (Pt 2): 347–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batty IH, Fleming IN, Downes CP . (2004). Muscarinic-receptor-mediated inhibition of insulin-like growth factor-1 receptor-stimulated phosphoinositide 3-kinase signalling in 1321N1 astrocytoma cells. Biochem J 379: 641–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batty IH, van der Kaay J, Gray A, Telfer JF, Dixon MJ, Downes CP . (2007). The control of phosphatidylinositol 3,4-bisphosphate concentrations by activation of the Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2, SHIP2. Biochem J 407: 255–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blero D, De Smedt F, Pesesse X, Paternotte N, Moreau C, Payrastre B et al. (2001). The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin. Biochem Biophys Res Commun 282: 839–843.

    CAS  PubMed  Google Scholar 

  • Cai Z, Semenza GL . (2005). PTEN activity is modulated during ischemia and reperfusion: involvement in the induction and decay of preconditioning. Circ Res 97: 1351–1359.

    CAS  PubMed  Google Scholar 

  • Campbell RB, Liu F, Ross AH . (2003). Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278: 33617–33620.

    CAS  PubMed  Google Scholar 

  • Chadborn NH, Ahmed AI, Holt MR, Prinjha R, Dunn GA, Jones GE et al. (2006). PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 119: 951–957.

    CAS  PubMed  Google Scholar 

  • Charest PG, Firtel RA . (2006). Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 16: 339–347.

    CAS  PubMed  Google Scholar 

  • Choi YC, Lee JH, Hong KW, Lee KS . (2004). 17 Beta-estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats. Fundam Clin Pharmacol 18: 547–557.

    CAS  PubMed  Google Scholar 

  • Costello PS, Gallagher M, Cantrell DA . (2002). Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol 3: 1082–1089.

    CAS  PubMed  Google Scholar 

  • Covey TM, Edes K, Fitzpatrick FA . (2007). Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene 26: 5784–5792.

    CAS  PubMed  Google Scholar 

  • Das S, Dixon JE, Cho W . (2003). Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA 100: 7491–7496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey N, Crosswell HE, De P, Parsons R, Peng Q, Su JD et al. (2008). The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res 68: 1862–1871.

    CAS  PubMed  Google Scholar 

  • Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP et al. (2000). Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351: 19–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowler S, Currie RA, Downes CP, Alessi DR . (1999). DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J 342 (Pt 1): 7–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Downes CP, Leslie NR, Batty IH, van der Kaay J . (2007a). Metabolic switching of PI3K-dependent lipid signals. Biochem Soc Trans 35: 188–192.

    CAS  PubMed  Google Scholar 

  • Downes CP, Perera N, Ross S, Leslie NR . (2007b). Substrate specificity and acute regulation of the tumour suppressor phosphatase, PTEN. Biochem Soc Symp 74: 69–80.

    CAS  Google Scholar 

  • Dyson JM, Kong AM, Wiradjaja F, Astle MV, Gurung R, Mitchell CA . (2005). The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2. Int J Biochem Cell Biol 37: 2260–2265.

    CAS  PubMed  Google Scholar 

  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J . (1998). Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17: 414–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franca-Koh J, Kamimura Y, Devreotes PN . (2007). Leading-edge research: PtdIns(3,4,5)P3 and directed migration. Nat Cell Biol 9: 15–17.

    CAS  PubMed  Google Scholar 

  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA . (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109: 611–623.

    CAS  PubMed  Google Scholar 

  • Gil A, Andres-Pons A, Fernandez E, Valiente M, Torres J, Cervera J et al. (2006). Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol Biol Cell 17: 4002–4013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U et al. (2000). Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol 156: 1693–1700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuriato S, Blero D, Robaye B, Bruyns C, Payrastre B, Erneux C . (2002). SHIP2 overexpression strongly reduces the proliferation rate of K562 erythroleukemia cell line. Biochem Biophys Res Commun 296: 106–110.

    CAS  PubMed  Google Scholar 

  • Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P et al. (1997). Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 272: 26857–26863.

    CAS  PubMed  Google Scholar 

  • Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K et al. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105: 692–697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harriague J, Bismuth G . (2002). Imaging antigen-induced PI3K activation in T cells. Nat Immunol 3: 1090–1096.

    CAS  PubMed  Google Scholar 

  • Harris SJ, Parry RV, Westwick J, Ward SG . (2008). Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J Biol Chem 283: 2465–2469.

    CAS  PubMed  Google Scholar 

  • Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM et al. (1998). Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12: 1610–1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314: 1458–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino Y, Nishimura K, Sumpio BE . (2007). Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain. J Cell Biochem 100: 515–526.

    CAS  PubMed  Google Scholar 

  • Hui ST, Andres AM, Miller AK, Spann NJ, Potter DW, Post NM et al. (2008). Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc Natl Acad Sci USA 105: 3921–3926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias PA, Devreotes PN . (2008). Navigating through models of chemotaxis. Curr Opin Cell Biol 20: 35–40.

    CAS  PubMed  Google Scholar 

  • Iijima M, Devreotes P . (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109: 599–610.

    CAS  PubMed  Google Scholar 

  • Iijima M, Huang YE, Devreotes P . (2002). Temporal and spatial regulation of chemotaxis. Dev Cell 3: 469–478.

    CAS  PubMed  Google Scholar 

  • Iijima M, Huang YE, Luo HR, Vazquez F, Devreotes PN . (2004). Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J Biol Chem 279: 16606–16613.

    CAS  PubMed  Google Scholar 

  • Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T . (2000). Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem 275: 10870–10875.

    CAS  PubMed  Google Scholar 

  • Insall R, Andrew N . (2007). Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. Curr Opin Microbiol 10: 578–581.

    CAS  PubMed  Google Scholar 

  • Janetopoulos C, Devreotes P . (2006). Phosphoinositide signaling plays a key role in cytokinesis. J Cell Biol 174: 485–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Guo W, Liang X, Rao Y . (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120: 123–135.

    CAS  PubMed  Google Scholar 

  • Keizer-Gunnink I, Kortholt A, Van Haastert PJ . (2007). Chemoattractants and chemorepellents act by inducing opposite polarity in phospholipase C and PI3-kinase signaling. J Cell Biol 177: 579–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KY, Lee JH, Park JH, Yoo MA, Kwak YG, Kim SO et al. (2004). Anti-apoptotic action of (2S,3S,4R)-N″-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxym ethyl-2H-benzopyran-4-yl)-N′-benzylguanidine (KR-31378) by suppression of the phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and increased phosphorylation of casein kinase2/Akt/cyclic AMP response element binding protein via maxi-K channel opening in neuronal cells. Eur J Pharmacol 497: 267–277.

    CAS  PubMed  Google Scholar 

  • Korthol A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJ . (2007). Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell 18: 4772–4779.

    PubMed Central  Google Scholar 

  • Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E . (2005). Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 19: 115–117.

    CAS  PubMed  Google Scholar 

  • Koul D, Jasser SA, Lu Y, Davies MA, Shen R, Shi Y et al. (2002). Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity. Oncogene 21: 2357–2364.

    CAS  PubMed  Google Scholar 

  • Krause M, Leslie JD, Stewart M, Lafuente EM, Valderrama F, Jagannathan R et al. (2004). Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 7: 571–583.

    CAS  PubMed  Google Scholar 

  • Krugmann S, Stephens L, Hawkins PT . (2006). Purification of ARAP3 and characterization of GAP activities. Methods Enzymol 406: 91–103.

    CAS  PubMed  Google Scholar 

  • Krugmann S, Williams R, Stephens L, Hawkins PT . (2004). ARAP3 is a PI3K- and rap-regulated GAP for RhoA. Curr Biol 14: 1380–1384.

    CAS  PubMed  Google Scholar 

  • Krystal G, Damen JE, Helgason CD, Huber M, Hughes MR, Kalesnikoff J et al. (1999). SHIPs ahoy. Int J Biochem Cell Biol 31: 1007–1010.

    CAS  PubMed  Google Scholar 

  • Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER et al. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 101: 16419–16424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacalle RA, Gomez-Mouton C, Barber DF, Jimenez-Baranda S, Mira E, Martinez AC et al. (2004). PTEN regulates motility but not directionality during leukocyte chemotaxis. J Cell Sci 117: 6207–6215.

    CAS  PubMed  Google Scholar 

  • Lazar DF, Saltiel AR . (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 5: 333–342.

    CAS  PubMed  Google Scholar 

  • Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y et al. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99: 323–334.

    CAS  PubMed  Google Scholar 

  • Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG . (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2 . J Biol Chem 277: 20336–20342.

    CAS  PubMed  Google Scholar 

  • Leslie NR . (2006). The redox regulation of PI 3-kinase-dependent signaling. Antioxid Redox Signal 8: 1765–1774.

    CAS  PubMed  Google Scholar 

  • Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP . (2001). Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 357: 427–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP . (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22: 5501–5510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie NR, Downes CP . (2004). PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie NR, Yang X, Downes CP, Weijer CJ . (2007). PtdIns(3,4,5)P3-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 17: 115–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li DM, Sun H . (1997). TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57: 2124–2129.

    CAS  PubMed  Google Scholar 

  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y et al. (2005). Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7: 399–404.

    CAS  PubMed  Google Scholar 

  • Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114: 215–227.

    CAS  PubMed  Google Scholar 

  • Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y et al. (2000). Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 10: 401–404.

    CAS  PubMed  Google Scholar 

  • Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A et al. (2006). Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119: 5160–5168.

    CAS  PubMed  Google Scholar 

  • Liu F, Wagner S, Campbell RB, Nickerson JA, Schiffer CA, Ross AH . (2005). PTEN enters the nucleus by diffusion. J Cell Biochem 96: 221–234.

    CAS  PubMed  Google Scholar 

  • Liu H, Radisky DC, Wang F, Bissell MJ . (2004). Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164: 603–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Yu Q, Liu JH, Zhang J, Wang H, Koul D et al. (2003). Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 278: 40057–40066.

    CAS  PubMed  Google Scholar 

  • Maccario H, Perera NM, Davidson L, Downes CP, Leslie NR . (2007). PTEN is destabilized by phosphorylation on Thr366. Biochem J 405: 439–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majerus PW, Kisseleva MV, Norris FA . (1999). The role of phosphatases in inositol signaling reactions. J Biol Chem 274: 10669–10672.

    CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V et al. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128: 383–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McConnachie G, Pass I, Walker SM, Downes CP . (2003). Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J 371: 947–955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA . (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18: 2092–2105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG . (2002). Direct identification of PTEN phosphorylation sites. FEBS Lett 528: 145–153.

    CAS  PubMed  Google Scholar 

  • Mochizuki Y, Takenawa T . (1999). Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. J Biol Chem 274: 36790–36795.

    CAS  PubMed  Google Scholar 

  • Ning K, Miller LC, Laidlaw HA, Burgess LA, Perera NM, Downes CP et al. (2006). A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells. EMBO J 25: 2377–2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R et al. (2007). Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9: 36–44.

    CAS  PubMed  Google Scholar 

  • Norris FA, Atkins RC, Majerus PW . (1997). The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272: 23859–23864.

    CAS  PubMed  Google Scholar 

  • Norris FA, Auethavekiat V, Majerus PW . (1995). The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270: 16128–16133.

    CAS  PubMed  Google Scholar 

  • Nystuen A, Legare ME, Shultz LD, Frankel WN . (2001). A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32: 203–212.

    CAS  PubMed  Google Scholar 

  • Odriozola L, Singh G, Hoang T, Chan AM . (2007). Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem 282: 23306–23315.

    CAS  PubMed  Google Scholar 

  • Okahara F, Ikawa H, Kanaho Y, Maehama T . (2004). Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem 279: 45300–45303.

    CAS  PubMed  Google Scholar 

  • Okamura A, Iwata N, Tamekane A, Yakushijin K, Nishikawa S, Hamaguchi M et al. (2006). Casein kinase Iε down-regulates phospho-Akt via PTEN, following genotoxic stress-induced apoptosis in hematopoietic cells. Life Sci 78: 1624–1629.

    CAS  PubMed  Google Scholar 

  • Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB . (2006). PCAF modulates PTEN activity. J Biol Chem 281: 26562–26568.

    CAS  PubMed  Google Scholar 

  • Okumura K, Zhao M, Depinho RA, Furnari FB, Cavenee WK . (2005). Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci USA 102: 2703–2706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ong CJ, Ming-Lum A, Nodwell M, Ghanipour A, Yang L, Williams DE et al. (2007). Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 110: 1942–1949.

    CAS  PubMed  Google Scholar 

  • Pallares J, Bussaglia E, Martinez-Guitarte JL, Dolcet X, Llobet D, Rue M et al. (2005). Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol 18: 719–727.

    CAS  PubMed  Google Scholar 

  • Papakonstanti EA, Ridley AJ, Vanhaesebroeck B . (2007). The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 26: 3050–3061.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN . (1998). G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95: 81–91.

    CAS  PubMed  Google Scholar 

  • Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA et al. (2000). Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 157: 1097–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL et al. (1999). Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 155: 1253–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinal N, Goberdhan DC, Collinson L, Fujita Y, Cox IM, Wilson C et al. (2006). Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 16: 140–149.

    CAS  PubMed  Google Scholar 

  • Rafiq K, Kolpakov MA, Abdelfettah M, Streblow DN, Hassid A, Dell′Italia LJ et al. (2006). Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J Biol Chem 281: 19781–19792.

    CAS  PubMed  Google Scholar 

  • Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A . (2004). Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303: 1179–1181.

    CAS  PubMed  Google Scholar 

  • Redfern RE, Redfern D, Furgason ML, Munson M, Ross AH, Gericke A . (2008). PTEN phosphatase selectively binds phosphoinositides and undergoes structural changes. Biochemistry 47: 2162–2171.

    CAS  PubMed  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA . (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17: 183–189.

    CAS  PubMed  Google Scholar 

  • Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131: 1190–1203.

    CAS  PubMed  Google Scholar 

  • Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM . (2000). Structure, function, and biology of SHIP proteins. Genes Dev 14: 505–520.

    CAS  PubMed  Google Scholar 

  • Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H et al. (2005). PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci USA 102: 4312–4317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JH, Ahn Y, Lee SR, Yeol Yeo C, Chung Hur K . (2005). The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 16: 348–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR . (2000). Polarization of chemoattractant receptor signaling during neutrophil chemotaxis [see comments]. Science 287: 1037–1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SH, Jan LY, Jan YN . (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112: 63–75.

    CAS  PubMed  Google Scholar 

  • Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR et al. (2005). An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170: 607–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen A, Wurmser AE, Emr SD, Stenmark H . (2001). The role of phosphoinositides in membrane transport. Curr Opin Cell Biol 13: 485–492.

    CAS  PubMed  Google Scholar 

  • Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO et al. (2005). Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 11: 199–205.

    CAS  PubMed  Google Scholar 

  • Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M et al. (2007). Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116: 1585–1595.

    CAS  PubMed  Google Scholar 

  • Subauste MC, Nalbant P, Adamson ED, Hahn KM . (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 280: 5676–5681.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T, Koni PA et al. (2003). Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 197: 657–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Nakano T, Mak TW, Sasaki T . (2008). Portrait of PTEN: messages from mutant mice. Cancer Sci 99: 209–213.

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Morales FC, Kreimann EL, Georgescu MM . (2006). PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 25: 910–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM et al. (2000). 5′ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 20: 6860–6871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CC, Deak M, Alessi DR, van Aalten DM . (2002). High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12: 1256–1262.

    CAS  PubMed  Google Scholar 

  • Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM . (2001). Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res 61: 4985–4989.

    CAS  PubMed  Google Scholar 

  • Torres J, Pulido R . (2001). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276: 993–998.

    CAS  PubMed  Google Scholar 

  • Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK et al. (2003). Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 278: 30652–30660.

    CAS  PubMed  Google Scholar 

  • Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128: 141–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valiente M, Andres-Pons A, Gomar B, Torres J, Gil A, Tapparel C et al. (2005). Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 280: 28936–28943.

    CAS  PubMed  Google Scholar 

  • Van der Kaay J, Beck M, Gray A, Downes CP . (1999). Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem 274: 35963–35968.

    CAS  PubMed  Google Scholar 

  • Van Keymeulen A, Wong K, Knight ZA, Govaerts C, Hahn KM, Shokat KM et al. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J Cell Biol 174: 437–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276: 48627–48630.

    CAS  PubMed  Google Scholar 

  • Vazquez F, Matsuoka S, Sellers WR, Yanagida T, Ueda M, Devreotes PN . (2006). Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci USA 103: 3633–3638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20: 5010–5018.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Stein W, Ramrath A, Grimm A, Muller-Borg M, Wodarz A . (2005). Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132: 1675–1686.

    CAS  PubMed  Google Scholar 

  • Vyas P, Norris FA, Joseph R, Majerus PW, Orkin SH . (2000). Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc Natl Acad Sci USA 97: 13696–13701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP . (2004). The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379: 301–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner OD . (2002). Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 14: 196–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wodarz A, Nathke I . (2007). Cell polarity in development and cancer. Nat Cell Biol 9: 1016–1024.

    CAS  PubMed  Google Scholar 

  • Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M . (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28: 886–898.

    CAS  PubMed  Google Scholar 

  • Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE et al. (2003). Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278: 28258–28263.

    CAS  PubMed  Google Scholar 

  • Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ et al. (2000). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 97: 4233–4238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K et al. (2003). Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114: 201–214.

    CAS  PubMed  Google Scholar 

  • Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S . (2008). Membrane phosphatidylserine regulates surface charge and protein localization. Science 319: 210–213.

    CAS  PubMed  Google Scholar 

  • Yeung T, Grinstein S . (2007). Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev 219: 17–36.

    CAS  PubMed  Google Scholar 

  • Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M et al. (2006). Receptor activation alters inner surface potential during phagocytosis. Science 313: 347–351.

    CAS  PubMed  Google Scholar 

  • Yu CX, Li S, Whorton AR . (2005). Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 68: 847–854.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Inositol Lipid Signalling laboratory is funded by the Medical Research Council, the Association for International Cancer Research and a consortium of pharmaceutical companies comprising Astra Zeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck and Co., Merck KGaA and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N R Leslie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leslie, N., Batty, I., Maccario, H. et al. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 27, 5464–5476 (2008). https://doi.org/10.1038/onc.2008.243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.243

Keywords

This article is cited by

Search

Quick links