Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human tumor-associated viruses and new insights into the molecular mechanisms of cancer

Abstract

The study of acute-transforming retroviruses and their oncogenes and of the multiple mechanisms deployed by DNA viruses to circumvent the growth-suppressive and proapoptotic function of tumor suppressor genes has provided the foundation of our current understanding of cancer biology. Unlike acute-transforming animal viruses, however, human tumor-associated viruses lead to malignancies with a prolonged latency and in conjunction with other environmental and host-related cooperating events. The relevance of viral infection to human cancer development has often been debated. We now know that at least six human viruses, Epstein–Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10–15% of the cancers worldwide. Hence, the opportunity exists to fight cancer at the global scale by preventing the spread of these viruses, by the development and distribution of effective and safe antiviral vaccines, and by identifying their oncogenic mechanism. Here, we discuss the molecular events underlying the neoplastic potential of the human tumor-associated viruses, with emphasis on the enigmatic KSHV and its numerous virally hijacked proangiogenic, immune-evasive and tumor-promoting genes. The emerging information may facilitate the development of new molecular-targeted approaches to prevent and treat virally associated human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS et al. (1999). Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93: 4034–4043.

    Article  CAS  PubMed  Google Scholar 

  • Araujo AQ, Silva MT . (2006). The HTLV-1 neurological complex. Lancet Neurol 5: 1068–1076.

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis L, Yaseen N, Sharma S . (1995). Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155: 1047–1056.

    CAS  PubMed  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E . (1997). Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385: 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al. (1998). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S et al. (2003). Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3: 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Beaudenon S, Kremsdorf D, Croissant O, Jablonska S, Wain-Hobson S, Orth G . (1986). A novel type of human papillomavirus associated with genital neoplasias. Nature 321: 246–249.

    Article  CAS  PubMed  Google Scholar 

  • Bellows DS, Chau BN, Lee P, Lazebnik Y, Burns WH, Hardwick JM . (2000). Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74: 5024–5031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg BS . (1977). Australia antigen and the biology of hepatitis B. Science 197: 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Bower M, Palmieri C, Dhillon T . (2006). AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis 19: 14–19.

    Article  PubMed  Google Scholar 

  • Brown KD, Hostager BS, Bishop GA . (2001). Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 193: 943–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubman D, Guasparri I, Cesarman E . (2007). Deregulation of c-Myc in primary effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26: 4979–4986.

    Article  CAS  PubMed  Google Scholar 

  • Burkitt D . (1962). A children's cancer dependent on climatic factors. Nature 194: 232–234.

    Article  CAS  PubMed  Google Scholar 

  • Buynak EB, Roehm RR, Tytell AA, Bertland II AU, Lampson GP, Hilleman MR . (1976). Vaccine against human hepatitis B. JAMA 235: 2832–2834.

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR . (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102: 5570–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  • Chao DT, Korsmeyer SJ . (1998). BCL-2 family: regulators of cell death. Annu Rev Immunol 16: 395–419.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS . (2002). Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298: 1432–1435.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Engels EA, Anderson WF, Gillison ML . (2008). Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol 26: 612–619.

    Article  PubMed  Google Scholar 

  • Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM et al. (2002). Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 76: 3421–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YB, Nicholas J . (2008). Autocrine and paracrine promotion of cell survival and virus replication by human herpesvirus 8 chemokines. J Virol 82: 6501–6513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciuffo G . (1907). Innesto positivo con filtrato di verruca volgare. G Ital d mal ven ed pelle 48: 12.

    Google Scholar 

  • Coffin JM, Hughes SH, Varmus H . (1997). Retroviruses. Cold Spring Harbor Laboratory Press: Plainview, NY.

    Google Scholar 

  • Colombo M, Kuo G, Choo QL, Donato MF, Del Ninno E, Tommasini MA et al. (1989). Prevalence of antibodies to hepatitis C virus in Italian patients with hepatocellular carcinoma. Lancet 2: 1006–1008.

    Article  CAS  PubMed  Google Scholar 

  • Cotter II MA, Robertson ES . (1999). The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Dienstag JL, Purcell HR, Alter HJ, Feinstone SM, Wong DC, Holland PV . (1977). Non-A, non-B post-transfusion hepatitis. Lancet 1: 560–562.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer D, Kedes DH . (1998). Do viral chemokines modulate Kaposi's sarcoma? Bioessays 20: 367–370.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D . (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72: 8309–8315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsam RT, Gutkind JS . (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7: 79–94.

    Article  CAS  PubMed  Google Scholar 

  • Duesberg PH, Vogt PK . (1970). Differences between the ribonucleic acids of transforming and non-transforming avian tumor viruses. Proc Natl Acad Sci USA 67: 1673–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson N, Buchkovich K, Whyte P, Harlow E . (1989a). The cellular 107 K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58: 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E . (1989b). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.

    Article  CAS  PubMed  Google Scholar 

  • Ellermann V, Bang O . (1908). Experimentelle leukamie bei huhnern. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 46: 595–597.

    Google Scholar 

  • Ellis M, Chew YP, Fallis L, Freddersdorf S, Boshoff C, Weiss RA et al. (1999). Degradation of p27(Kip) cdk inhibitor triggered by Kaposi's sarcoma virus cyclin-cdk6 complex. EMBO J 18: 644–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein MA, Henle G, Achong BG, Barr YM . (1965). Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J Exp Med 121: 761–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein MA . (1971). The possible role of viruses in human cancer. Lancet 1: 1344–1347.

    Article  CAS  PubMed  Google Scholar 

  • Epstein MA . (2001). Historical background. Philos Trans R Soc Lond B Biol Sci 356: 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C et al. (2003). KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 116: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM et al. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Fujimuro M, Wu FY, ApRhys C, Kajumbula H, Young DB, Hayward GS et al. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9: 300–306.

    Article  CAS  PubMed  Google Scholar 

  • Ganem D, Prince AM . (2004). Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med 350: 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  • Ganem D . (2006). KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 1: 273–296.

    Article  CAS  PubMed  Google Scholar 

  • Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS . (1997). KSHV ORF K9 (vIRF) is an oncogene, which inhibits the interferon signaling pathway. Oncogene 15: 1979–1985.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini R, Panatto D . (2009). Cervical cancer: From Hippocrates through Rigoni-Stern to zur Hausen. Vaccine 27: A4–A5.

    Article  PubMed  Google Scholar 

  • Geilen CC, Husak R, Steinhoff M . (2006). Pathogenesis and clinical manifestation of Kaposi's sarcoma. Front Radiat Ther Oncol 39: 59–67.

    PubMed  Google Scholar 

  • Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I . (1998). Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest 102: 1469–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P, Sealfon SC et al. (2006). The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116: 1264–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann C, Podgrabinska S, Skobe M, Ganem D . (2006). Activation of NF-kappaB by the latent vFLIP gene of Kaposi's sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol 80: 7179–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV . (1999). Viral clearance without destruction of infected cells during acute HBV infection. Science 284: 825–829.

    Article  CAS  PubMed  Google Scholar 

  • Guidotti LG, Chisari FV . (2006). Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1: 23–61.

    Article  CAS  PubMed  Google Scholar 

  • Hickman ES, Moroni MC, Helin K . (2002). The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev 12: 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Hirschman RJ, Shulman NR, Barker LF, Smith KO . (1969). Virus-like particles in sera of patients with infectious and serum hepatitis. JAMA 208: 1667–1670.

    Article  CAS  PubMed  Google Scholar 

  • Howley PM, Livingston DM . (2009). Small DNA tumor viruses: large contributors to biomedical sciences. Virology 384: 256–259.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Garber AC, Renne R . (2002). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 76: 11677–11687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature 388: 190–195.

    Article  CAS  PubMed  Google Scholar 

  • Javier RT, Butel JS . (2008). The history of tumor virology. Cancer Res 68: 7693–7706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G, Kelley K et al. (2005). The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J Immunol 174: 3686–3694.

    Article  CAS  PubMed  Google Scholar 

  • Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M . (2009). Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5: e1000397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kao JH, Chen DS . (2002). Global control of hepatitis B virus infection. Lancet Infect Dis 2: 395–403.

    Article  PubMed  Google Scholar 

  • Keller SA, Schattner EJ, Cesarman E . (2000). Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96: 2537–2542.

    Article  CAS  PubMed  Google Scholar 

  • Kilger E, Kieser A, Baumann M, Hammerschmidt W . (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17: 1700–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson Jr AG . (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecoq H . (2001). Discovery of the first virus, the tobacco mosaic virus: 1892 or 1898? C R Acad Sci III 324: 929–933.

    Article  CAS  PubMed  Google Scholar 

  • Levi MJ . (2005). Classic Kaposi's sarcoma. J Am Podiatr Med Assoc 95: 586–588.

    Article  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Newcomb EW, Dalla-Favera R . (1987). Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell 49: 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Louahed J, Struyf S, Demoulin JB, Parmentier M, Van Snick J, Van Damme J et al. (2003). CCR8-dependent activation of the RAS/MAPK pathway mediates anti-apoptotic activity of I-309/CCL1 and vMIP-I. Eur J Immunol 33: 494–501.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani F, Banks L . (2001). The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20: 7874–7887.

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS . (2008). An NF-kappaB gene expression signature contributes to Kaposi's sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 27: 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Jeang KT . (2007). Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7: 270–280.

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Ganem D . (2005). The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307: 739–741.

    Article  CAS  PubMed  Google Scholar 

  • Molden J, Chang Y, You Y, Moore PS, Goldsmith MA . (1997). A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J Biol Chem 272: 19625–19631.

    Article  CAS  PubMed  Google Scholar 

  • Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS . (2001). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61: 2641–2648.

    CAS  PubMed  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3: 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Montaner S, Sodhi A, Servitja JM, Ramsdell AK, Barac A, Sawai ET et al. (2004). The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104: 2903–2911.

    Article  CAS  PubMed  Google Scholar 

  • Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET et al. (2006). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer Res 66: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E . (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80: 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV . (1998). Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas J, Ruvolo VR, Burns WH, Sandford G, Wan X, Ciufo D et al. (1997). Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3: 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Offermann MK . (2007). Kaposi sarcoma herpesvirus-encoded interferon regulator factors. Curr Top Microbiol Immunol 312: 185–209.

    CAS  PubMed  Google Scholar 

  • Parkin DM . (2006). The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118: 3030–3044.

    Article  CAS  PubMed  Google Scholar 

  • Pauk J, Huang ML, Brodie SJ, Wald A, Koelle DM, Schacker T et al. (2000). Mucosal shedding of human herpesvirus 8 in men. N Engl J Med 343: 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . (1980). Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77: 7415–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radkov SA, Kellam P, Boshoff C . (2000). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6: 1121–1127.

    Article  CAS  PubMed  Google Scholar 

  • Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ, Stoiber H et al. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71: 5915–5921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkilde MM, Kledal TN, Holst PJ, Schwartz TW . (2000). Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem 275: 26309–26315.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkilde MM, Smit MJ, Waldhoer M . (2008). Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 153 Suppl 1: S154–S166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rous P . (1910). A transmissible avian neoplasm (sarcoma of the common fowl). pp 696–705.

  • Rous P . (1911). A sarcoma of the fowl transmissible by an agent separable from the tumor cells. pp 397–411.

  • Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93: 14862–14867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safai B . (1987). Pathophysiology and epidemiology of epidemic Kaposi's sarcoma. Semin Oncol 14: 7–12.

    CAS  PubMed  Google Scholar 

  • Sarid R, Sato T, Bohenzky RA, Russo JJ, Chang Y . (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 3: 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV et al. (2002). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol 76: 8797–8807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp TV, Boshoff C . (2000). Kaposi's sarcoma-associated herpesvirus: from cell biology to pathogenesis. IUBMB Life 49: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA et al. (2000). The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60: 4873–4880.

    CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S, Miyazaki H, Gutkind JS . (2001). MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 287: 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S, Gutkind JS . (2004a). Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis? FASEB J 18: 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA et al. (2004b). Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101: 4821–4826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA et al. (2006). The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G et al. (2005). Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N Engl J Med 352: 1317–1323.

    Article  CAS  PubMed  Google Scholar 

  • Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C et al. (1999). Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J Virol 73: 4181–4187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK . (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Oishi N, Kaneko S, Murakami S . (2006). Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 97: 977–983.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DL, Astemborski J, Rai RM, Anania FA, Schaeffer M, Galai N et al. (2000). The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA 284: 450–456.

    Article  CAS  PubMed  Google Scholar 

  • Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington Jr W et al. (2009). Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol 27: 453–459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H . (1977). Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50: 481–492.

    Article  CAS  PubMed  Google Scholar 

  • Verschuren EW, Klefstrom J, Evan GI, Jones N . (2002). The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2: 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Vider-Shalit T, Fishbain V, Raffaeli S, Louzoun Y . (2007). Phase-dependent immune evasion of herpesviruses. J Virol 81: 9536–9545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Vogt PK . (2009). A humble chicken virus that changed biology and medicine. Lancet Oncol 10: 96.

    Article  PubMed  Google Scholar 

  • Wang J, Chenivesse X, Henglein B, Brechot C . (1990). Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1997). The cat and mouse games that genes, viruses, and cells play. Cell 88: 573–575.

    Article  CAS  PubMed  Google Scholar 

  • Wood C, Harrington Jr W . (2005). AIDS and associated malignancies. Cell Res 15: 947–952.

    Article  PubMed  Google Scholar 

  • Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ . (2008). Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 371: 139–154.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Rodriguez-Huete A, Pari GS . (2006). Evaluation of the lytic origins of replication of Kaposi's sarcoma-associated virus/human herpesvirus 8 in the context of the viral genome. J Virol 80: 9905–9909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M et al. (2000). Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 191: 445–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M . (2001). Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19: 475–496.

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Rickinson AB . (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4: 757–768.

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Wang H, Herndier B, Ganem D . (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93: 6641–6646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • zur Hausen H . (2009). Papillomaviruses in the causation of human cancers — a brief historical account. Virology 384: 260–265.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work could not be cited because of space constraints. This research was supported by the National Institutes of Health Intramural AIDS Targeted Antiviral Program and the National Institute of Dental and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Gutkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, D., Gutkind, J. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 27 (Suppl 2), S31–S42 (2008). https://doi.org/10.1038/onc.2009.351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.351

Keywords

This article is cited by

Search

Quick links