Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells

Abstract

Constitutive activation of the phosphoinositide 3-kinase (PI3K)–AKT pathway is observed in up to 70% of acute myelogenous leukemia. To investigate the relevance of an intrinsic PI3K–AKT pathway activation in hematopoietic malignancies, we analysed the effect of point mutations in the catalytic (p110α) and regulatory (p85α) subunit of class IA PI3K. We demonstrated that mutations in the helical (E542K, E545A) and kinase domain (H1047R) of p110α constitutively activate the PI3K–AKT pathway and lead to factor-independent growth of early hematopoietic cells. Proliferation and survival of the cells were inhibited in a time- and dose-dependent manner using either PI3K or AKT inhibitors. The mammalian target of rapamycin (mTOR) was demonstrated to be important for mitogenic, but not antiapoptotic signaling of mutant p110α. In a syngenic mouse model, hematopoietic cells expressing mutated p110α induced a leukemia-like disease characterized by anemia, neoplastic infiltration of hematopoietic organs and 90% mortality within 5 weeks, whereas activated mutants of the receptor tyrosine kinase c-KIT led to 100% mortality within 10 days. Our data show that point mutations in the p110α subunit of class IA PI3K confer factor independence to hematopoietic cells in vitro and leukemogenic potential in vivo, but have lower transforming activity than a deregulated class III receptor tyrosine kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S et al. (2004). The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3: 772–775.

    Article  CAS  Google Scholar 

  • Bader AG, Kang S, Vogt PK . (2006). Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103: 1475–1479.

    Article  CAS  Google Scholar 

  • Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. (2006). A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25: 6648–6659.

    Article  CAS  Google Scholar 

  • Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J et al. (2000). Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J 14: 895–903.

    Article  CAS  Google Scholar 

  • Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M . (2004). Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 23: 2830–2840.

    Article  CAS  Google Scholar 

  • Bousquet M, Recher C, Queleen C, Demur C, Payrastre B, Brousset P . (2005). Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia. Br J Haematol 131: 411–413.

    Article  CAS  Google Scholar 

  • Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE et al. (2004). Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64: 5048–5050.

    Article  CAS  Google Scholar 

  • Cammenga J, Horn S, Bergholz U, Sommer G, Besmer P, Fiedler W et al. (2005). Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood 106: 3958–3961.

    Article  CAS  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64: 7678–7681.

    Article  CAS  Google Scholar 

  • Casamayor A, Morrice NA, Alessi DR . (1999). Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J 342 (Part 2): 287–292.

    Article  CAS  Google Scholar 

  • Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG . (2005). Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205: 498–506.

    Article  CAS  Google Scholar 

  • Frohling S, Scholl C, Gilliland DG, Levine RL . (2005). Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 23: 6285–6295.

    Article  CAS  Google Scholar 

  • Gilliland DG, Griffin JD . (2002). Role of FLT3 in leukemia. Curr Opin Hematol 9: 274–281.

    Article  Google Scholar 

  • Grandage VL, Gale RE, Linch DC, Khwaja A . (2005). PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 19: 586–594.

    Article  CAS  Google Scholar 

  • Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-Myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    Article  CAS  Google Scholar 

  • Hashimoto K, Matsumura I, Tsujimura T, Kim DK, Ogihara H, Ikeda H et al. (2003). Necessity of tyrosine 719 and phosphatidylinositol 3′-kinase-mediated signal pathway in constitutive activation and oncogenic potential of c-Kit receptor tyrosine kinase with the Asp814Val mutation. Blood 101: 1094–1102.

    Article  CAS  Google Scholar 

  • Hoffman B, Amanullah A, Shafarenko M, Liebermann DA . (2002). The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21: 3414–3421.

    Article  CAS  Google Scholar 

  • Hummerdal P, Andersson P, Willander K, Linderholm M, Soderkvist P, Jonsson JI . (2006). Absence of hot spot mutations of the PIK3CA gene in acute myeloid leukaemia. Eur J Haematol 77: 86–87.

    Article  CAS  Google Scholar 

  • Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J et al. (2005). Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65: 4562–4567.

    Article  CAS  Google Scholar 

  • Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennström S et al. (1998). Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17: 743–753.

    Article  CAS  Google Scholar 

  • Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W et al. (2002). Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16: 894–901.

    Article  CAS  Google Scholar 

  • Kang S, Bader AG, Vogt PK . (2005). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102: 802–807.

    Article  CAS  Google Scholar 

  • Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT . (1996). Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16: 4117–4127.

    Article  CAS  Google Scholar 

  • Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. (2006). Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 108: 2358–2365.

    Article  CAS  Google Scholar 

  • Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW et al. (2005). PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24: 1477–1480.

    Article  CAS  Google Scholar 

  • Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al. (2005). Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11: 2875–2878.

    Article  CAS  Google Scholar 

  • Li VS, Wong CW, Chan TL, Chan AS, Zhao W, Chu KM et al. (2005). Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer 5: 29.

    Article  Google Scholar 

  • Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. (2003). Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17: 1–8.

    Article  CAS  Google Scholar 

  • Malempati S, Tibbitts D, Cunningham M, Akkari Y, Olson S, Fan G et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia 20: 1572–1581.

    Article  CAS  Google Scholar 

  • Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. (2006). Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20: 911–928.

    Article  CAS  Google Scholar 

  • Min YH, Cheong JW, Kim JY, Eom JI, Lee ST, Hahn JS et al. (2004). Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res 64: 5225–5231.

    Article  CAS  Google Scholar 

  • Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. (2003). Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17: 995–997.

    Article  CAS  Google Scholar 

  • Muller CI, Miller CW, Hofmann WK, Gross ME, Walsh CS, Kawamata N et al. (2007). Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. Leuk Res 31: 27–32.

    Article  Google Scholar 

  • Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T et al. (2006). Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 20: 230–238.

    Article  CAS  Google Scholar 

  • Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al. (2001). The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61: 7426–7429.

    CAS  PubMed  Google Scholar 

  • Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM et al. (2005). Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105: 2527–2534.

    Article  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . (1996). Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15: 2442–2451.

    Article  CAS  Google Scholar 

  • Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES et al. (2006). Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108: 1668–1676.

    Article  CAS  Google Scholar 

  • Samuels Y, Diaz Jr LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I et al. (2005). Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7: 561–573.

    Article  CAS  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    Article  CAS  Google Scholar 

  • Schade AE, Powers JJ, Wlodarski MW, Maciejewski JP . (2006). Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis. Blood 107: 4834–4840.

    Article  CAS  Google Scholar 

  • Schubbert S, Shannon K, Bollag G . (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7: 295–308.

    Article  CAS  Google Scholar 

  • Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C et al. (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196: 1227–1240.

    Article  CAS  Google Scholar 

  • Shelton JG, Blalock WL, White ER, Steelman LS, McCubrey JA . (2004). Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle 3: 503–512.

    CAS  PubMed  Google Scholar 

  • Shivakrupa R, Bernstein A, Watring N, Linnekin D . (2003). Phosphatidyl 3′-kinase is required for growth of mast cells expressing the Kit catalytic domain mutant. Cancer Res 63: 4412–4419.

    CAS  PubMed  Google Scholar 

  • Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C et al. (1993). Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors 8: 197–209.

    Article  CAS  Google Scholar 

  • Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. (2005). Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106: 1063–1066.

    Article  CAS  Google Scholar 

  • Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A et al. (2006). Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108: 4178–4186.

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    Article  CAS  Google Scholar 

  • Wick MJ, Ramos FJ, Chen H, Quon MJ, Dong LQ, Liu F . (2003). Mouse 3-phosphoinositide-dependent protein kinase-1 undergoes dimerization and trans-phosphorylation in the activation loop. J Biol Chem 278: 42913–42919.

    Article  CAS  Google Scholar 

  • Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . (2003). Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102: 972–980.

    Article  CAS  Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522.

    Article  CAS  Google Scholar 

  • Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. (2004). Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18: 267–275.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marion Ziegler, Susanne Roscher and Arne Düsedau for excellent technical assistance, and Alberto Martelli for critical discussion. This work was supported by the Deutsche Krebshilfe. The Heinrich-Pette-Institut is supported by the Freie und Hansestadt Hamburg and the German Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bäsecke.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, S., Bergholz, U., Jücker, M. et al. Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells. Oncogene 27, 4096–4106 (2008). https://doi.org/10.1038/onc.2008.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.40

Keywords

This article is cited by

Search

Quick links