Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aberrant nucleocytoplasmic localization of the retinoblastoma tumor suppressor protein in human cancer correlates with moderate/poor tumor differentiation

Abstract

Inactivation of the retinoblastoma (RB) tumor suppressor pathway, via elevated cyclin-dependent kinase (CDK) activity, is observed in majority of human cancers. Since CDK deregulation is evident in most cancer cells, pharmacological CDK inhibition has become an attractive therapeutic strategy in oncology. We recently showed that an oncogenic CDK4R24C mutation alters the subcellular localization of the normally nuclear RB phosphoprotein. Here, using 71 human cancer cell lines and over 300 primary human cancer tissues, we investigated whether changes in RB subcellular localization occur during human cancer progression. We uncover that diverse human cancers and their derived cell lines, particularly those with poor tumor differentiation, display significant cytoplasmic mislocalization of ordinarily nuclear RB. The nucleocytoplasmically distributed RB was derived via CDK-dependent and Exportin1-mediated nuclear export. Indeed, cytoplasmically mislocalized RB could be efficiently confined to the nucleus by pharmacologically reducing CDK activity or by inhibiting the Exportin1-mediated nuclear export pathway. Our observations uncover a post-translational CDK-dependent mechanism of RB inactivation and suggest that cytoplasmically localized RB may harbor a tumor promoting function. We propose that RB inactivation, via aberrant nucleocytoplasmic transport, may disrupt normal cell differentiation programs and accelerate the cancer process. These results are evidence that tumor cells modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alkarain A, Jordan R, Slingerland J . (2004). p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 9: 67–80.

    Article  CAS  Google Scholar 

  • Blain SW, Massague J . (2002). Breast cancer banishes p27 from nucleus. Nat Med 8: 1076–1078.

    Article  CAS  Google Scholar 

  • Boyd SD, Tsai KY, Jacks T . (2000). An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2: 563–568.

    Article  CAS  Google Scholar 

  • Braunschweig T, Chung JY, Hewitt SM . (2005). Tissue microarrays: bridging the gap between research and the clinic. Expert Rev Proteomics 2: 325–336.

    Article  CAS  Google Scholar 

  • Camphausen K, Brady KJ, Burgan WE, Cerra MA, Russell JS, Bull EE et al. (2004). Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci. Mol Cancer Ther 3: 409–416.

    CAS  PubMed  Google Scholar 

  • Chestukhin A, Litovchick L, Rudich K, DeCaprio JA . (2002). Nucleocytoplasmic shuttling of p130/RBL2: novel regulatory mechanism. Mol Cell Biol 22: 453–468.

    Article  CAS  Google Scholar 

  • Classon M, Harlow E . (2002). The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917.

    Article  CAS  Google Scholar 

  • Durfee T, Mancini MA, Jones D, Elledge SJ, Lee WH . (1994). The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing. J Cell Biol 127: 609–622.

    Article  CAS  Google Scholar 

  • Geyer RK, Yu ZK, Maki CG . (2000). The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2: 569–573.

    Article  CAS  Google Scholar 

  • Goodrich DW . (2006). The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 25: 5233–5243.

    Article  CAS  Google Scholar 

  • Haluska FG, Hodi FS . (1998). Molecular genetics of familial cutaneous melanoma. J Clin Oncol 16: 670–682.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Henderson BR . (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2: 653–660.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Hill CS . (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10: 283–294.

    Article  CAS  Google Scholar 

  • Jiao W, Datta J, Lin HM, Dundr M, Rane SG . (2006). Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J Biol Chem 281: 38098–38108.

    Article  CAS  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW . (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23.

    CAS  PubMed  Google Scholar 

  • Kastan MB, Zambetti GP . (2003). Parc-ing p53 in the cytoplasm. Cell 112: 1–2.

    Article  CAS  Google Scholar 

  • Kau TR, Way JC, Silver PA . (2004). Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4: 106–117.

    Article  CAS  Google Scholar 

  • Khidr L, Chen PL . (2006). RB, the conductor that orchestrates life, death and differentiation. Oncogene 25: 5210–5219.

    Article  CAS  Google Scholar 

  • Knudsen ES, Wang JY . (1997). Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 17: 5771–5783.

    Article  CAS  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8: 1153–1160.

    Article  CAS  Google Scholar 

  • Liggett Jr WH, Sidransky D . (1998). Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16: 1197–1206.

    Article  CAS  Google Scholar 

  • Lu S, Tsai SY, Tsai MJ . (1997). Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 57: 4511–4516.

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  Google Scholar 

  • Mittnacht S, Lees JA, Desai D, Harlow E, Morgan DO, Weinberg RA . (1994). Distinct sub-populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO J 13: 118–127.

    Article  CAS  Google Scholar 

  • Mittnacht S, Weinberg RA . (1991). G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65: 381–393.

    Article  CAS  Google Scholar 

  • Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E et al. (2001). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15: 267–285.

    Article  CAS  Google Scholar 

  • Nork TM, Millecchia LL, Poulsen G . (1994). Immunolocalization of the retinoblastoma protein in the human eye and in retinoblastoma. Invest Ophthalmol Vis Sci 35: 2682–2692.

    CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L et al. (1989). Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81: 1088–1092.

    Article  CAS  Google Scholar 

  • Rane SG, Cosenza SC, Mettus RV, Reddy EP . (2002). Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 22: 644–656.

    Article  CAS  Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al. (1999). Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22: 44–52.

    Article  CAS  Google Scholar 

  • Rosin-Arbesfeld R, Townsley F, Bienz M . (2000). The APC tumour suppressor has a nuclear export function. Nature 406: 1009–1012.

    Article  CAS  Google Scholar 

  • Schwartz GK, Shah MA . (2005). Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23: 9408–9421.

    Article  CAS  Google Scholar 

  • Sedlacek HH . (2001). Mechanisms of action of flavopiridol. Crit Rev Oncol Hematol 38: 139–170.

    Article  CAS  Google Scholar 

  • Shapiro GI . (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24: 1770–1783.

    Article  CAS  Google Scholar 

  • Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. (2002). PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8: 1145–1152.

    Article  CAS  Google Scholar 

  • Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M et al. (2001a). Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 20: 6637–6647.

    Article  CAS  Google Scholar 

  • Sotillo R, Garcia JF, Ortega S, Martin J, Dubus P, Barbacid M et al. (2001b). Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 98: 13312–13317.

    Article  CAS  Google Scholar 

  • Stade K, Ford CS, Guthrie C, Weis K . (1997). Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90: 1041–1050.

    Article  CAS  Google Scholar 

  • Stevens C, La Thangue NB . (2003). E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412: 157–169.

    Article  CAS  Google Scholar 

  • Stokke T, Erikstein BK, Smedshammer L, Boye E, Steen HB . (1993). The retinoblastoma gene product is bound in the nucleus in early G1 phase. Exp Cell Res 204: 147–155.

    Article  CAS  Google Scholar 

  • Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC . (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99: 5515–5520.

    Article  CAS  Google Scholar 

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. (2002). Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8: 1136–1144.

    Article  CAS  Google Scholar 

  • Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinstein LV, Monks AP et al. (1992). Neural computing in cancer drug development: predicting mechanism of action. Science 258: 447–451.

    Article  CAS  Google Scholar 

  • Weis K . (2003). Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112: 441–451.

    Article  CAS  Google Scholar 

  • Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E et al. (1995). A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269: 1281–1284.

    Article  CAS  Google Scholar 

  • Xu L, Massague J . (2004). Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5: 209–219.

    Article  CAS  Google Scholar 

  • Yen A, Coder D, Varvayanis S . (1997). Concentration of RB protein in nucleus vs cytoplasm is stable as phosphorylation of RB changes during the cell cycle and differentiation. Eur J Cell Biol 72: 159–165.

    CAS  PubMed  Google Scholar 

  • Zacksenhaus E, Bremner R, Phillips RA, Gallie BL . (1993). A bipartite nuclear localization signal in the retinoblastoma gene product and its importance for biological activity. Mol Cell Biol 13: 4588–4599.

    Article  CAS  Google Scholar 

  • Ziegler EC, Ghosh S . (2005). Regulating inducible transcription through controlled localization. Sci STKE 2005: re6.

    PubMed  Google Scholar 

  • Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al. (1996). Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12: 97–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yang Shi (siCDK2), Krishnendu Roy (Flavopiridol), Susan Holbeck (NCI-60 cell lines); Tatiana Karpova (LRBGE imaging facility) for microscopy training. Jashodeep Datta was supported by the Colgate University-NIH internship. This research was supported by the Intramural Research Program of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S G Rane.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, W., Lin, HM., Datta, J. et al. Aberrant nucleocytoplasmic localization of the retinoblastoma tumor suppressor protein in human cancer correlates with moderate/poor tumor differentiation. Oncogene 27, 3156–3164 (2008). https://doi.org/10.1038/sj.onc.1210970

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210970

Keywords

This article is cited by

Search

Quick links