Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L

Abstract

Programmed cardiac myocyte death contributes to pathological ventricular remodeling and the progression of myocardial infarction or pressure overload hypertrophy to dilated cardiomyopathy. Recent work has identified importance of stress-mediated transcriptional induction of BNIP3 (BCL2 and 19-kDa interacting protein-3) and NIX/BNIP3L in cardiac remodeling. Here, the regulatory mechanisms for these two factors in the heart and their effects on programmed cardiomyocyte death are reviewed, with a focus on information derived from studies using mouse models of cardiac BNIP3 and NIX/BNIP3L overexpression and gene ablation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK et al. (2008). 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction. Circulation 117: 296–329.

    Article  Google Scholar 

  • Ashkenazi A, Dixit VM . (1999). Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11: 255–260.

    Article  CAS  Google Scholar 

  • Baetz D, Regula KM, Ens K, Shaw J, Kothari S, Yurkova N et al. (2005). Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 112: 3777–3785.

    Article  CAS  Google Scholar 

  • Berry JJ, Hoffman JM, Steenbergen C, Baker JA, Floyd C, Van Trigt P et al. (1993). Human pathologic correlation with PET in ischemic and nonischemic cardiomyopathy. J Nucl Med 34: 39–47.

    CAS  PubMed  Google Scholar 

  • Birse-Archbold JL, Kerr LE, Jones PA, McCulloch J, Sharkey J . (2005). Differential profile of Nix upregulation and translocation during hypoxia/ischaemia in vivo versus in vitro. J Cereb Blood Flow Metab 25: 1356–1365.

    Article  CAS  Google Scholar 

  • Bolli R, Marban E . (1999). Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79: 609–634.

    Article  CAS  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735–1738.

    CAS  PubMed  Google Scholar 

  • Bruick RK . (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97: 9082–9087.

    Article  CAS  Google Scholar 

  • Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB . (2005). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer 118: 1660–1669.

    Article  Google Scholar 

  • Chen G, Cizeau J, Vande VC, Park JH, Bozek G, Bolton J et al. (1999). Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274: 7–10.

    Article  CAS  Google Scholar 

  • Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al. (1997). The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 186: 1975–1983.

    Article  CAS  Google Scholar 

  • Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH . (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280: H2313–H2320.

    Article  CAS  Google Scholar 

  • Cizeau J, Ray R, Chen G, Gietz RD, Greenberg AH . (2000). The C. elegans orthologue ceBNIP3 interacts with CED-9 and CED-3 but kills through a BH3- and caspase-independent mechanism. Oncogene 19: 5453–5463.

    Article  CAS  Google Scholar 

  • Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G et al. (1999). Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99: 3071–3078.

    Article  CAS  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS . (2004). Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23: 2785–2796.

    Article  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ . (2004). Cell death: critical control points. Cell 116: 205–219.

    Article  CAS  Google Scholar 

  • Di Napoli P, Taccardi AA, Grilli A, Felaco M, Balbone A, Angelucci D et al. (2003). Left ventricular wall stress as a direct correlate of cardiomyocyte apoptosis in patients with severe dilated cardiomyopathy. Am Heart J 146: 1105–1111.

    Article  Google Scholar 

  • Diwan A, Dorn GW . (2007). Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22: 56–64.

    CAS  Google Scholar 

  • Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT et al. (2007a). Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 104: 6794–6799.

    Article  CAS  Google Scholar 

  • Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al. (2007b). Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825–2833.

    Article  CAS  Google Scholar 

  • Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Heller-Brown J et al. (2008a). Endoplasmic reticular–mitochondrial crosstalk in Nix-mediated cell death. J Clin Invest 118: 3870–3880.

    Article  Google Scholar 

  • Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW . (2008b). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117: 396–404.

    Article  CAS  Google Scholar 

  • Dorn II GW . (2005). Physiologic growth and pathologic genes in cardiac development and cardiomyopathy. Trends Cardiovasc Med 15: 185–189.

    Article  CAS  Google Scholar 

  • Dorn II GW . (2009). Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81: 465–473.

    Article  CAS  Google Scholar 

  • Foo RS, Chan LK, Kitsis RN, Bennett MR . (2007). Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem 282: 5529–5535.

    Article  CAS  Google Scholar 

  • Foo RS, Mani K, Kitsis RN . (2005). Death begets failure in the heart. J Clin Invest 115: 565–571.

    Article  CAS  Google Scholar 

  • Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP et al. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97: 5723–5728.

    Article  CAS  Google Scholar 

  • Francis GS . (1998). Changing the remodeling process in heart failure: basic mechanisms and laboratory results. Curr Opin Cardiol 13: 156–161.

    CAS  PubMed  Google Scholar 

  • Frazier DP, Wilson A, Graham RM, Thompson JW, Bishopric NH, Webster KA . (2006). Acidosis regulates the stability, hydrophobicity, and activity of the BH3-only protein Bnip3. Antioxid Redox Signal 8: 1625–1634.

    Article  CAS  Google Scholar 

  • Galvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA et al. (2006). Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 281: 1442–1448.

    Article  CAS  Google Scholar 

  • Graham RM, Thompson JW, Wei J, Bishopric NH, Webster KA . (2007). Regulation of Bnip3 death pathways by calcium, phosphorylation, and hypoxia-reoxygenation. Antioxid Redox Signal 9: 1309–1315.

    Article  CAS  Google Scholar 

  • Grossman W, Jones D, McLaurin LP . (1975). Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56: 56–64.

    Article  CAS  Google Scholar 

  • Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB . (2006). Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2: 307–309.

    Article  CAS  Google Scholar 

  • Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146–157.

    Article  CAS  Google Scholar 

  • Haworth RA, Hunter DR . (1979). The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195: 460–467.

    Article  CAS  Google Scholar 

  • Hayakawa Y, Chandra M, Miao W, Shirani J, Brown JH, Dorn GW et al. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 108: 3036–3041.

    Article  CAS  Google Scholar 

  • Henriquez M, Armisen R, Stutzin A, Quest AFG . (2008). Cell death by necrosis, a regulated way to go. Curr Mol Med 8: 187–206.

    Article  CAS  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG et al. (2005). ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112: e154–e235.

    Article  Google Scholar 

  • Kothari S, Cizeau J, McMillian-Ward E, Israels SJ, Bailes M, Ens K et al. (2003). BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22: 4734–4744.

    Article  CAS  Google Scholar 

  • Kroemer G, Levine B . (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010.

    Article  CAS  Google Scholar 

  • Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA . (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 99: 12825–12830.

    Article  CAS  Google Scholar 

  • Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB . (2008). Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295: H2025–H2031.

    Article  CAS  Google Scholar 

  • Latif N, Khan MA, Birks E, O’Farrell A, Westbrook J, Dunn MJ et al. (2000). Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol 35: 1769–1777.

    Article  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P . (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486.

    Article  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y et al. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis, and autophagy. Biochim Biophys Acta 1366: 177–196.

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J et al. (2007). Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282: 35803–35813.

    Article  CAS  Google Scholar 

  • MacEwan DJ . (2002). TNF ligands and receptors—a matter of life and death. Br J Pharmacol 135: 855–875.

    Article  CAS  Google Scholar 

  • Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H et al. (2007). Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117: 2431–2444.

    Article  CAS  Google Scholar 

  • Nam Y-J, Mani K, Ashton AW, Peng C-F, Krishnamurthy B, Hayakawa Y et al. (2004). Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15: 912.

    Article  Google Scholar 

  • Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M . (2001). Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes. Cardiol Clin 19: 113–126.

    Article  CAS  Google Scholar 

  • Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ et al. (1996). Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335: 1182–1189.

    Article  CAS  Google Scholar 

  • Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ et al. (2002). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277: 9219–9225.

    Article  CAS  Google Scholar 

  • Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA et al. (1997). Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141.

    Article  CAS  Google Scholar 

  • Olivetti G, Capasso JM, Sonnenblick EH, Anversa P . (1990). Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67: 23–34.

    Article  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Auger DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  Google Scholar 

  • Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP et al. (2003). Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100: 9324–9329.

    Article  Google Scholar 

  • Ray R, Chen G, Vande VC, Cizeau J, Park JH, Reed JC et al. (2000). BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 275: 1439–1448.

    Article  CAS  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA . (2002). Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91: 226–231.

    Article  CAS  Google Scholar 

  • Rizzuto R, Pozzan T . (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86: 369–408.

    Article  CAS  Google Scholar 

  • Rubart M, Field LJ . (2006). Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68: 29–49.

    Article  CAS  Google Scholar 

  • Saelens X, Festjens N, Vande WL, van Gurp M, van Loo G, Vandenabeele P . (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23: 2861–2874.

    Article  CAS  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232–235.

    Article  CAS  Google Scholar 

  • Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD . (2004). Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Res 1001: 133–142.

    Article  CAS  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104: 19500–19505.

    Article  CAS  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300: 135–139.

    Article  CAS  Google Scholar 

  • Siu PM, Bryner RW, Muriasits Z, Alway SE . (2005). Response of XIAP, ARC, and FLIP apoptotic suppressors to 8 wk of treadmill running in rat heart and skeletal muscle. J Appl Physiol 99: 204–209.

    Article  CAS  Google Scholar 

  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL . (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669–6673.

    CAS  PubMed  Google Scholar 

  • Stauffer SR . (2007). Small molecule inhibition of the Bcl-X(L)-BH3 protein–protein interaction: proof-of-concept of an in vivo chemopotentiator ABT-737. Curr Top Med Chem 7: 961–965.

    Article  CAS  Google Scholar 

  • Syed F, Odley A, Hahn HS, Brunskill EW, Lynch RA, Marreez Y et al. (2004). Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95: 1200–1206.

    Article  CAS  Google Scholar 

  • Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L et al. (1996). Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 97: 2891–2897.

    Article  CAS  Google Scholar 

  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . (2007). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229–6242.

    Article  CAS  Google Scholar 

  • Yasuda M, Theodorakis P, Subramanian T, Chinnadurai G . (1998). Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 273: 12415–12421.

    Article  CAS  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    Article  CAS  Google Scholar 

  • Yurkova N, Shaw J, Blackie K, Weidman D, Jayas R, Flynn B et al. (2008). The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res 102: 472–479.

    Article  CAS  Google Scholar 

  • Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8: 725–730.

    Article  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G W Dorn II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, G., Kirshenbaum, L. Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene 27 (Suppl 1), S158–S167 (2008). https://doi.org/10.1038/onc.2009.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.53

Keywords

This article is cited by

Search

Quick links