Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling

Abstract

Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Batty IH, Fleming IN, Downes CP . (2004). Muscarinic-receptor-mediated inhibition of insulin-like growth factor-1 receptor-stimulated phosphoinositide 3-kinase signalling in 1321N1 astrocytoma cells. Biochem J 379: 641–651.

    Article  CAS  Google Scholar 

  • Board R, Jayson GC . (2005). Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Updat 8: 75–83.

    Article  CAS  Google Scholar 

  • Cheung PC, Campbell DG, Nebreda AR, Cohen P . (2003). Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J 22: 5793–5805.

    Article  CAS  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW . (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192.

    Article  CAS  Google Scholar 

  • Cutillas PR, Khwaja A, Graupera M, Pearce W, Gharbi S, Waterfield M et al. (2006). Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc Natl Acad Sci USA 103: 8959–8964.

    Article  CAS  Google Scholar 

  • Danilkovitch-Miagkova A, Zbar B . (2002). Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 109: 863–867.

    Article  CAS  Google Scholar 

  • Darragh J, Soloaga A, Beardmore VA, Wingate AD, Wiggin GR, Peggie M et al. (2005). MSKs are required for the transcription of the nuclear orphan receptors Nur77, Nurr1 and Nor1 downstream of MAPK signalling. Biochem J 390: 749–759.

    Article  CAS  Google Scholar 

  • Fisher TL, White MF . (2004). Signaling pathways: the benefits of good communication. Curr Biol 14: R1005–R1007.

    Article  CAS  Google Scholar 

  • Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E et al. (2006). Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441: 366–370.

    Article  CAS  Google Scholar 

  • Harrington LS, Findlay GM, Lamb RF . (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 30: 35–42.

    Article  CAS  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    Article  CAS  Google Scholar 

  • Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM . (2002). Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 62: 2942–2950.

    CAS  PubMed  Google Scholar 

  • Jackson JG, Yee D . (1999). IRS-1 expression and activation are not sufficient to activate downstream pathways and enable IGF-I growth response in estrogen receptor negative breast cancer cells. Growth Horm IGF Res 9: 280–289.

    Article  CAS  Google Scholar 

  • Javelaud D, Mauviel A . (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24: 5742–5750.

    Article  CAS  Google Scholar 

  • Keeton AB, Bortoff KD, Franklin JL, Messina JL . (2005). Blockade of rapid versus prolonged extracellularly regulated kinase 1/2 activation has differential effects on insulin-induced gene expression. Endocrinology 146: 2716–2725.

    Article  CAS  Google Scholar 

  • Kiepe D, Ciarmatori S, Hoeflich A, Wolf E, Tonshoff B . (2005). Insulin-like growth factor (IGF)-I stimulates cell proliferation and induces IGF binding protein (IGFBP)-3 and IGFBP-5 gene expression in cultured growth plate chondrocytes via distinct signaling pathways. Endocrinology 146: 3096–3104.

    Article  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al. (2006). A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125: 733–747.

    Article  CAS  Google Scholar 

  • Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL . (1994). The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem 269: 20648–20652.

    CAS  PubMed  Google Scholar 

  • LeRoith D, Roberts Jr CT . (2003). The insulin-like growth factor system and cancer. Cancer Lett 195: 127–137.

    Article  CAS  Google Scholar 

  • Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP . (2001). Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 357: 427–435.

    Article  CAS  Google Scholar 

  • Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR et al. (2001). Insulin stimulates PKCzeta-mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276: 14459–14465.

    Article  CAS  Google Scholar 

  • Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C et al. (2005). A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8: 111–118.

    Article  CAS  Google Scholar 

  • Mise-Omata S, Obata Y, Iwase S, Mise N, Doi TS . (2005). Transient strong reduction of PTEN expression by specific RNAi induces loss of adhesion of the cells. Biochem Biophys Res Commun 328: 1034–1042.

    Article  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230.

    Article  CAS  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95: 13513–13518.

    Article  CAS  Google Scholar 

  • Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R . (2006). A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol 8: 571–580.

    Article  CAS  Google Scholar 

  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  CAS  Google Scholar 

  • Parrizas M, Saltiel AR, LeRoith D . (1997). Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272: 154–161.

    Article  CAS  Google Scholar 

  • Pirola L, Johnston AM, Van Obberghen E . (2004). Modulation of insulin action. Diabetologia 47: 170–184.

    Article  CAS  Google Scholar 

  • Ravichandran LV, Esposito DL, Chen J, Quon MJ . (2001). Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276: 3543–3549.

    Article  CAS  Google Scholar 

  • Sajan MP, Standaert ML, Bandyopadhyay G, Quon MJ, Burke Jr TR, Farese RV . (1999). Protein kinase C-zeta and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J Biol Chem 274: 30495–30500.

    Article  CAS  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  Google Scholar 

  • Shelton JG, Steelman LS, Abrams SL, Bertrand FE, Franklin RA, McMahon M et al. (2005). The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it? Expert Opin Ther Targets 9: 1009–1030.

    Article  CAS  Google Scholar 

  • Simpson L, Li J, Liaw D, Hennessy I, Oliner J, Christians F et al. (2001). PTEN expression causes feedback upregulation of insulin receptor substrate 2. Mol Cell Biol 21: 3947–3958.

    Article  CAS  Google Scholar 

  • Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R et al. (2002). Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 22: 3842–3851.

    Article  CAS  Google Scholar 

  • Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA et al. (2002). Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 295: 2088–2091.

    Article  CAS  Google Scholar 

  • Um SH, D'Alessio D, Thomas G . (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3: 393–402.

    Article  CAS  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200–205.

    Article  CAS  Google Scholar 

  • Vivekanand P, Rebay I . (2006). Intersection of signal transduction pathways and development. Annu Rev Genet 40: 139–157.

    Article  CAS  Google Scholar 

  • White MF . (2002). IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: E413–E422.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rodolfo Marquez for the PI3-kinase inhibitor PI-103 and Doreen Cantrell, Bart Vanhaesebroeck and Dario Alessi for expression constructs. This work was supported by the Medical Research Council, the Association for International Cancer Research and the Dundee DSTT consortium (Astra Zeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck and Co., Merck KGaA and Pfizer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N R Leslie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lackey, J., Barnett, J., Davidson, L. et al. Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling. Oncogene 26, 7132–7142 (2007). https://doi.org/10.1038/sj.onc.1210520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210520

Keywords

This article is cited by

Search

Quick links