Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing

Abstract

We have recently shown that E1A protein of human adenovirus downregulates epidermal growth factor receptor (EGFR) expression and induces apoptosis in head and neck (HNSCC) and lung cancer cells independently of their p53 status. E1A has five isoforms of which the major ones E1A12S and E1A13S regulate transcription of cellular genes by binding to transcriptional modulators such as pRB, CtBP, p300 and p400. In this study, we have identified E1A12S isoform to have the highest effect on EGFR suppression and induction of apoptosis in HNSCC cells. Similar to Ad5, E1A12S from human adenovirus types 2, 3, 9 and 12 suppressed EGFR, whereas E1A12S of adenovirus types 4 and 40 had no effect on EGFR expression. Using deletion mutants of E1A12S we have shown that interaction of E1A with p400, but not p300 or pRB, is required for EGFR suppression and apoptosis. Inhibition of p400 by short hairpin RNA confirmed that HNSCC cells with reduced p400 expression were less sensitive to E1A-induced suppression of EGFR and apoptosis. p300 function was shown to be dispensable, as cells expressing E1A mutants that are unable to bind p300, or p300 knockout cells, remained sensitive to E1A-induced apoptosis. In summary, this study identifies p400 as an important mediator of E1A-induced downregulation of EGFR and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CR:

conserved region

DAPI:

4′,6-diamino-2-phenylindole

DMEM:

Dulbecco's modified Eagle's medium

EGFR:

epidermal growth factor receptor

FCS:

fetal calf serum

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

GFP:

green fluorescent protein

HA:

influenza A virus haemagglutinin

HEK 293A:

human embryonal kidney 293A

HNSCC:

human head and neck squamous cell carcinoma

MOI:

multiplicity of infection

MTT:

3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

PAGE, polyacrylamide gel electrophoresis; PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

RT:

reverse transcription

SDS:

lauryl sulphate

References

  • Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS . (2004). Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 329: 477–492.

    Article  CAS  PubMed  Google Scholar 

  • Avvakumov N, Wheeler R, D'Halluin JC, Mymryk JS . (2002). Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J Virol 76: 7968–7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeau D, Charbonneau R, Whalen SG, Bayley ST, Branton PE . (1994). Functional interactions within adenovirus E1A protein complexes. Oncogene 9: 359–373.

    CAS  PubMed  Google Scholar 

  • Bergman LM, Blaydes JP . (2006). C-terminal binding proteins: emerging roles in cell survival and tumorigenesis. Apoptosis 11: 879–888.

    Article  CAS  PubMed  Google Scholar 

  • Chan HM, Narita M, Lowe SW, Livingston DM . (2005). The p400 E1A-associated protein is a novel component of the p53 –> p21 senescence pathway. Genes Dev 19: 196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou SK, White E . (1997). p300 binding by E1A cosegregates with p53 induction but is dispensable for apoptosis. J Virol 71: 3515–3525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuff JA, Barton GJ . (2000). Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40: 502–511.

    Article  CAS  PubMed  Google Scholar 

  • Debbas M, White E . (1993). Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7: 546–554.

    Article  CAS  PubMed  Google Scholar 

  • Egan C, Jelsma TN, Howe JA, Bayley ST, Ferguson B, Branton PE . (1988). Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol 8: 3955–3959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flinterman M, Gäken J, Farzaneh F, Tavassoli M . (2003). E1A-mediated suppression of EGFR expression and induction of apoptosis in head and neck squamous carcinoma cell lines. Oncogene 22: 1965–1977.

    Article  CAS  PubMed  Google Scholar 

  • Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K et al. (2005). E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 280: 5945–5959.

    Article  CAS  PubMed  Google Scholar 

  • Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM et al. (2003). MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4: 575–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch SM, Mymryk JS . (2002). Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3: 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V et al. (2001). The p400 complex is an essential E1A transformation target. Cell 106: 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Graham FL, Prevec L . (1991). Manipulation of adenovirus vectors. In: Murray E (ed.). Methods in Molecular Biology, vol. 7. Humana Press: Cliffton, NJ, pp 109–128.

    Google Scholar 

  • Grandis JR, Sok JC . (2004). Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344.

    Article  CAS  PubMed  Google Scholar 

  • Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M et al. (2004). p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101: 7386–7391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones N, Shenk T . (1979). Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Kalyankrishna S, Grandis JR . (2006). Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 24: 2666–2672.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE . (1993). Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B . (1986). Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 57: 765–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mymryk JS . (1998). Database of mutations within the adenovirus 5 E1A oncogene. Nucleic Acids Res 26: 292–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mymryk JS, Shire K, Bayley ST . (1994). Induction of apoptosis by adenovirus type 5 E1A in rat cells requires a proliferation block. Oncogene 9: 1187–1193.

    CAS  PubMed  Google Scholar 

  • Najafi SM, Li Z, Makino K, Shao R, Hung MC . (2003). The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun 305: 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  • Paterson IC, Patel V, Sandy JR, Prime SS, Yeudall WA . (1995). Effects of transforming growth factor beta-1 on growth-regulatory genes in tumour-derived human oral keratinocytes. Br J Cancer 72: 922–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A . (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8: 11–31.

    Article  CAS  PubMed  Google Scholar 

  • Querido E, Teodoro JG, Branton PE . (1997). Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. J Virol 71: 3526–3533.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelson AV, Lowe SW . (1997). Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci USA 94: 12094–12099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelson AV, Narita M, Chan HM, Jin J, de Stanchina E, McCurrach ME et al. (2005). p400 is required for E1A to promote apoptosis. J Biol Chem 280: 21915–21923.

    Article  CAS  PubMed  Google Scholar 

  • Sartor M, Steingrimsdottir H, Elamin F, Gäken J, Warnakulasuriya S, Partridge M et al. (1999). Role of p16/MTS1, cyclin D1 and RB in primary oral cancer and oral cancer cell lines. Br J Cancer 80: 79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd SE, Howe JA, Mymryk JS, Bayley ST . (1993). Induction of the cell cycle in baby rat kidney cells by adenovirus type 5 E1A in the absence of E1B and a possible influence of p53. J Virol 67: 2944–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taubert S, Gorrini C, Frank SR, Parisi T, Fuchs M, Chan HM et al. (2004). E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol 24: 4546–4556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyteca S, Vandromme M, Legube G, Chevillard-Briet M, Trouche D . (2006). Tip60 and p400 are both required for UV-induced apoptosis but play antagonistic roles in cell cycle progression. EMBO J 25: 1680–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallian S, Chin KV, Chang KS . (1998). The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 18: 7147–7156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B et al. (1993). Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan DH, Chang LS, Hung MC . (1991). Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus E1a gene products. Oncogene 6: 343–345.

    CAS  PubMed  Google Scholar 

  • Yu D, Hung MC . (1998). The erbB2 gene as a cancer therapeutic target and the tumor- and metastasis-suppressing function of E1A. Cancer Metastasis Rev 17: 195–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Bill Gullick for the generous gift of EGFR antibody, Dr Kun-San Chang for PML antibody and Dr Ho-Man Chan for p400 antibody. We also thank Professor Bruce Luxon (Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA) for his help in using the JNET neural network feature of JPRED software for protein structure prediction and for helpful discussions. Marcella Flinterman was supported by a grant from the UK Department of Trade and Industry. We thank DTI and CRUK for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tavassoli.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flinterman, M., Mymryk, J., Klanrit, P. et al. p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 26, 6863–6874 (2007). https://doi.org/10.1038/sj.onc.1210497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210497

Keywords

This article is cited by

Search

Quick links