Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional dysregulation during myeloid transformation in AML

Abstract

The current paradigm on leukemogenesis indicates that leukemias are propagated by leukemic stem cells. The genomic events and pathways involved in the transformation of hematopoietic precursors into leukemic stem cells are increasingly understood. This concept is based on genomic mutations or functional dysregulation of transcription factors in malignant cells of patients with acute myeloid leukemia (AML). Loss of the CCAAT/enhancer binding protein-α (CEBPA) function in myeloid cells in vitro and in vivo leads to a differentiation block, similar to that observed in blasts from AML patients. CEBPA alterations in specific subgroups of AML comprise genomic mutations leading to dominant-negative mutant proteins, transcriptional suppression by leukemic fusion proteins, translational inhibition by activated RNA-binding proteins, and functional inhibition by phosphorylation or increased proteasomal-dependent degradation. The PU.1 gene can be mutated or its expression or function can be blocked by leukemogenic fusion proteins in AML. Point mutations in the RUNX1/AML1 gene are also observed in specific subtypes of AML, in addition to RUNX1 being the most frequent target for chromosomal translocation in AML. These data are persuasive evidence that impaired function of particular transcription factors contributes directly to the development of human AML, and restoring their function represents a promising target for novel therapeutic strategies in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akasaka T, Balasa T, Russell LJ, Sugimoto KJ, Majid A, Walewska R et al. (2007). Five members of the CEBP transcription factor family are targeted by recurrent IGH-translocations in B-cell precursor acute lymphoblastic leukemia (BC-ALL). Blood 109: 3451–3461.

    Article  CAS  PubMed  Google Scholar 

  • Barjesteh van Waalwijk van Doorn-Khosrovani SB, Erpelnick C, Meijer J, Oosterhoud S, van Putten WL, Valk PJ et al. (2003). Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 4: 31–40.

    Article  PubMed  Google Scholar 

  • Behre G, Singh SM, Liu H, Bortolin LT, Christopeit M, Radomska HS et al. (2002). Ras signaling enhances the ability of CEBPA to induce granulocytic differentiation by phosphorylation of serine 248. J Biol Chem 277: 26293–26299.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M, Ludwig M, Oppliger-Leibundgut E, Mueller BU, Solenthaler M, Fey MF et al. (2005). Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 11: 1416–1425.

    Article  CAS  PubMed  Google Scholar 

  • Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. (2004). Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  • Chapiro E, Russell L, Radford-Weiss I, Bastard C, Lessard M, Struski S et al. (2006). Overexpression of CEBPA resulting from the translocation t(14;19)(q32;q13) of human precursor B acute lymphoblastic leukemia. Blood 108: 3560–3563.

    Article  CAS  PubMed  Google Scholar 

  • Chim CS, Wong ASY, Kwong YL . (2002). Infrequent hypermethylation of CEBPA promoter in acute myeloid leukaemia. Br J Haematol 119: 988–990.

    Article  CAS  PubMed  Google Scholar 

  • Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL et al. (2004). PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 104: 3437–3444.

    Article  CAS  PubMed  Google Scholar 

  • Duprez E, Wagner K, Koch H, Tenen DG . (2003). C/EBPβ: a major PML-RARA-responsive gene in retinoic acid-induced differentiation in APL cells. EMBO J 22: 5806–5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari-Amorotti G, Keeshan K, Zattoni M, Guerzoni C, Iotti G, Cattelani S et al. (2006). Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by CEBPA. Blood 108: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman A . (2002). Transcriptional control of granulocyte and monocyte development. Oncogene 21: 3377–3390.

    Article  CAS  PubMed  Google Scholar 

  • Frohling S, Schlenk RF, Krauter J, Chiede C, Ehninger G, Haase D et al. (2005). Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chromosomes Cancer 42: 427–432.

    Article  PubMed  Google Scholar 

  • Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Brenner A, Kreitmeier S et al. (2004). CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22: 624–633.

    Article  PubMed  Google Scholar 

  • Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al. (2002). Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 99: 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Harada Y, Tanaka H, Kimura A, Inaba T . (2003). Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101: 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Healy J, Bélanger H, Beaulieu P, Larivière M, Lauda D, Sinnett D . (2007). Promoter SNPs in G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia. Blood 109: 683–692.

    Article  CAS  PubMed  Google Scholar 

  • Heath V, Suh HC, Holman M, Renn K, Gooya JM, Parkin S et al. (2004). C/EBPα deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood 104: 1639–1647.

    Article  CAS  PubMed  Google Scholar 

  • Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. (2004). The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of calreticulin. Proc Natl Acad Sci USA 101: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al. (2005). CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 106: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al. (2001). C-myc is a critical target for C/EBPα in granulopoiesis. Mol Cell Biol 21: 3789–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H et al. (2006). Tribbles homolog 2 inactivates CEBPA and causes acute myelogenous leukemia. Cancer Cell 10: 401–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC . (2002). Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 34: 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Lee YL, Jones LC, Timchenko NA, Perrotti D, Tenen DG, Kogan S . (2006). CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities. Blood 108: 2416–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh JY et al. (2005). Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show distinct immunophenotype of the leukemic cells. Clin Cancer Res 11: 1372–1379.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Keefer JR, Wang QF, Friedman AD . (2003). Reciprocal effects of C/EBPα and PKCδ on JunB expression and monocytic differentiation depend upon the C/EBPα basic region. Blood 101: 3885–3892.

    Article  CAS  PubMed  Google Scholar 

  • Matsuno NMO, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T et al. (2003). Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 17: 2492–2499.

    Article  CAS  PubMed  Google Scholar 

  • McFie PJ, Wang GL, Timchenko NA, Wilson HL, Hu X, Roesler WJ . (2006). Identification of a co-repressor that inhibits the transcriptional and growth-arrest activities of CCAAT/enhancer-binding protein α. J Biol Chem 281: 18069–18080.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S . (2006). Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 103: 1486–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. (2003). Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific FLT3 mutations. Blood 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  • Mueller BU, Pabst T . (2006). CEBPA and the pathophysiology of acute myeloid leukemia (AML). Curr Opin Hematol 13: 7–14.

    Article  PubMed  Google Scholar 

  • Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N et al. (2006a). ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107: 3330–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller BU, Pabst T, Hauser P, Neuberg D, Tenen DG . (2006b). Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia. Br J Cancer 94: 1918–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. (2002). Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Gupta V, Sorce D, Kim WY, Sali A, Chait BT et al. (1999). Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol 6: 615–619.

    Article  CAS  PubMed  Google Scholar 

  • Nanri T, Uike N, Kawakita T, Iwanaga E, Hoshino K, Mitsuya H et al. (2006). A pedigree harbouring a germ-line N-terminal C/EBPα mutation and development of acute myeloblastic leukemia with a somatic C-terminal C/EBPα mutation. Blood 108: 543A.

    Google Scholar 

  • Osato M . (2004). Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23: 4284–4296.

    Article  CAS  PubMed  Google Scholar 

  • Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Era T et al. (1999). Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. (2001a). AML1-ETO downregulates the granulocytic differentiation factor CEBPA in t(8;21) myeloid leukemia. Nat Med 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. (2001b). Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (CEBPA), in acute myeloid leukemia. Nat Genet 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Pabst T, Stillner E, Neuberg D, Nimer S, Willman CL, List AF et al. (2006). Mutations of the myeloid transcription factor CEBPA are not associated with the blast crisis of chronic myeloid leukaemia. Br J Haematol 133: 400–402.

    Article  CAS  PubMed  Google Scholar 

  • Parkin SE, Baer M, Copeland TD, Schwartz RC, Johnson PF . (2002). Regulation of CCAAT/enhancer binding protein (C/EBP) activator proteins by heterodimerization with C/EBPγ(Ig/EBP). J Biol Chem 277: 23563–23572.

    Article  CAS  PubMed  Google Scholar 

  • Pastinen T, Hudson TJ . (2004). Cis-acting regulatory variation in the human genome. Science 306: 647–650.

    Article  CAS  PubMed  Google Scholar 

  • Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. (2002). BCR-ABL suppresses CEBPA expression through inhibitory action of hnRNP E2. Nat Genet 30: 48–58.

    Article  CAS  PubMed  Google Scholar 

  • Porse BT, Bryder D, Theilgaard-Mönch K, Hasemann MS, Anderson K, Damgaard I et al. (2005). Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocytic lineage. J Exp Med 202: 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM et al. (2001). E2F repression by CEBPA is required for adipogenesis and granulopoiesis in vivo. Cell 107: 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. (2002). Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  • Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. (2000). High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96: 2862–2869.

    CAS  PubMed  Google Scholar 

  • Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. (2006). Block of CEBPA function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 203: 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbauer F, Tenen DG . (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Rosmarin AG, Yang Z, Resendes KK . (2005). Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33: 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Ross SE, Radomska HS, Wu B, Zhang P, Winnay JN, Bajnok L et al. (2004). Phosphorylation of C/EBPα inhibits granulopoiesis. Mol Cell Biol 24: 675–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R et al. (2003). M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 101: 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  • Sellick GS, Spendlove HE, Catovsky D, Pritchard-Jones K, Houlston RS . (2005). Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukemia. Leukemia 19: 1276–1278.

    Article  CAS  PubMed  Google Scholar 

  • Shih LY, Liang DC, Huang CF, Wu JH, Lin TL, Wang PN et al. (2006). AML patients with CEBPA mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia 20: 604–609.

    Article  CAS  PubMed  Google Scholar 

  • Silva FP, Morolli B, Storlazzi CT, Anelli L, Wessels H, Bezrookove V et al. (2003). Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene 22: 538–547.

    Article  CAS  PubMed  Google Scholar 

  • Skokowa J, Cario G, Uenalan M, Schambach A, Germeshausen M, Battmer K et al. (2006). LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Arch R, Smith LL, Bainton N, Neat M, Taylor C et al. (2005). Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. Br J Haematol 128: 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J . (2004). Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351: 2403–2407.

    Article  CAS  PubMed  Google Scholar 

  • Snaddon J, Smith ML, Neat M, Cambal-Parrales M, Dixon-McIver A, Arch R et al. (2003). Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 37: 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Suraweera N, Meijne E, Moody J, Carvajal-Carmona LG, Yoshida L, Pollard P et al. (2005). Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukemia. Oncogene 24: 3678–3683.

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Brena RM, Hackanson B, Morrison C, Otterson GA, Plass C . (2006). Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein α activity in lung cancer. J Natl Cancer Inst 98: 396–406.

    Article  CAS  PubMed  Google Scholar 

  • Tenen DG . (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Tenen DG, Hromas R, Licht JD, Zhang DE . (1997). Transcription factors, normal myeloid development, and leukemia. Blood 90: 489–519.

    CAS  PubMed  Google Scholar 

  • Timchenko LT, Iakova P, Welm AL, Cai ZJ, Timchenko NA . (2002). Calreticulin interacts with C/EBPα and C/EBPβ mRNAs and represses translation of C/EBP proteins. Mol Cell Biol 22: 7242–7257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong BTH, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al. (2003). CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 101: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  • Valk PJM, Verhaak RGW, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doom Khosrovani S, Boer JM et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  • Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et al. (2003). The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101: 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Wagner K, Zhang P, Rosenbauer F, Drescher B, Kobayashi S, Radomska HS et al. (2006). Absence of the transcription factor CCAAT enhancer binding protein α results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci USA 103: 6338–6343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MJ, Park JS, Ries RE, Lau SK, McLellan M, Jaeger S et al. (2005). Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARA. Proc Natl Acad Sci USA 102: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, D'Costa J, Civin CI, Friedman AD . (2006). C/EBPα directs monocytic commitment of primary myeloid progenitors. Blood 108: 1223–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Iakova P, Wilde M, Awad S, Timchenko NA . (2004). Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of CEBPA growth inhibitory activity. Genes Dev 18: 912–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters BJ, Louwers I, Valk PJM, Löwenberg B, Delwel R . (2007). A recurrent in-frame insertion in a CEBPA transactivation domain is a polymorphism rather than a mutation that does not affect gene expression profiling-based clustering of AML. Blood 109: 389–390.

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Ye M, Feng R, Graf T . (2004). Stepwise reprogramming of B cells into macrophages. Cell 117: 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . (1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 94: 569–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. (2004). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21: 853–863.

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D . (2004). Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPα expression. Blood 103: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all investigators whose work could not be cited due to space limitations. This work was supported by grants from the Swiss National Science Foundation SF 310000-109388 to TP, and SF 310000-113761 to BUM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Pabst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabst, T., Mueller, B. Transcriptional dysregulation during myeloid transformation in AML. Oncogene 26, 6829–6837 (2007). https://doi.org/10.1038/sj.onc.1210765

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210765

Keywords

This article is cited by

Search

Quick links