Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

EGFR kinase domain mutations – functional impact and relevance for lung cancer therapy

Abstract

In 2004 remarkable clinical responses in non-small-cell lung cancer (NSCLC) patients treated with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib were reported to correlate with the presence of certain somatic EGFR kinase domain mutations in tumors. Since then, a surge of enthusiasm has been encountered in the field of molecular and clinical oncology. Beyond the promise of a tailored medicine, questions about the molecular mechanisms underlying the observed effects have arisen. In vitro analysis of NSCLC cells with endogenous EGFR mutations, recombinant expression of EGFR variants by transfection of several cell lines and the generation of transgenic mice expressing mutant EGFR were applied to study the impact of these genetic alterations on cellular signaling and cell fate. This review outlines the current mechanistic knowledge derived from such studies and discusses the relevance of EGFR kinase domain mutations for EGFR-directed therapies, including monoclonal antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H et al. (2005). Aberrant EGFR signalling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 65: 226–235.

    CAS  PubMed  Google Scholar 

  • Ando K, Ohmori T, Inoue F, Kadofuku T, Hosaka T, Ishida H et al. (2005). Enhancement of sensitivity to TNFα in NSCLC cells with acquired resistance to gefitinib. Clin Cancer Res 11: 8872–8879.

    CAS  PubMed  Google Scholar 

  • Arao T, Fukumoto H, Takeda M, Tamura T, Saijo N, Nishio K . (2004). Small in-frame deletion in the EGFR as a target for ZD6474. Cancer Res 64: 9101–9104.

    CAS  PubMed  Google Scholar 

  • Asahina H, Yamazaki K, Kinoshita I, Sukoh N, Harada M, Yokouchi H et al. (2006). A phase II trial of gefitinib as first-line therapy for advanced NSCLC with EGFR mutations. Br J Cancer 95: 998–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber TD, Vogelstein B, Kinzler KW, Velculescu VE . (2004). Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 351: 2883.

    CAS  PubMed  Google Scholar 

  • Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R et al. (2005b). Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 37: 1315–1316.

    CAS  PubMed  Google Scholar 

  • Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW et al. (2005a). EGFR mutations and gene amplification in NSCLC: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 23: 8081–8092.

    CAS  PubMed  Google Scholar 

  • Blencke S, Ullrich A, Daub H . (2003). Mutation of threonine 766 in the EGFR reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem 278: 15435–15440.

    CAS  PubMed  Google Scholar 

  • Calvo E, Baselga J . (2006). Ethnic differences in response to EGFR tyrosine kinase inhibitors. J Clin Oncol 24: 2158–2163.

    CAS  PubMed  Google Scholar 

  • Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L et al. (2005a). EGFR gene and protein and gefitinib sensitivity in NSCLC. J Natl Cancer Inst 97: 643–655.

    CAS  PubMed  Google Scholar 

  • Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V et al. (2004). Akt phosphorylation and gefitinib efficacy in patients with advanced NSCLC. J Natl Cancer Inst 96: 1133–1141.

    CAS  PubMed  Google Scholar 

  • Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S, Ross S et al. (2006). Kinetic analysis of EGFR somatic mutant proteins shows increased sensitivity to the EGFR tyrosine kinase inhibitor, erlotinib. Cancer Res 66: 8163–8171.

    CAS  PubMed  Google Scholar 

  • Chen YR, Fu YN, Lin CH, Yang ST, Hu SF, Chen YT et al. (2006). Distinctive activation patterns in constitutively active and gefitinib-sensitive EGFR mutants. Oncogene 25: 1205–1215.

    CAS  PubMed  Google Scholar 

  • Choong NW, Dietrich S, Seiwert TY, Tretiakova MS, Nallasura V, Davies GC et al. (2006). Gefitinib response of erlotinib-refractory lung cancer involving meninges--role of EGFR mutation. Nat Clin Pract Oncol 3: 50–57.

    CAS  PubMed  Google Scholar 

  • Coldren CD, Helfrich BA, Witta SE, Sugita M, Lapadat R, Zeng C et al. (2006). Baseline gene expression predicts sensitivity to gefitinib in NSCLC cell lines. Mol Cancer Res 4: 521–528.

    CAS  PubMed  Google Scholar 

  • Damstrup L, Wandahl PM, Bastholm L, Elling F, Skovgaard PH . (2002). EGFR mutation type III transfected into a SCLC cell line is predominantly localized at the cell surface and enhances the malignant phenotype. Int J Cancer 97: 7–14.

    CAS  PubMed  Google Scholar 

  • Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS et al. (2005). Mutations in the EGFR and in KRAS are predictive and prognostic indicators in patients with NSCLC treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23: 5900–5909.

    CAS  PubMed  Google Scholar 

  • Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C et al. (2005). ErbB-3 mediates PI3K activity in gefitinib-sensitive NSCLC cell lines. Proc Natl Acad Sci USA 102: 3788–3793.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM et al. (2006). Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 116: 2695–2706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23: 329–336.

    CAS  PubMed  Google Scholar 

  • Fong KM, Sekido Y, Gazdar AF, Minna JD . (2003). Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax 58: 892–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE et al. (2005). High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of EGFR. Cancer Res 65: 11478–11485.

    CAS  PubMed  Google Scholar 

  • Gazdar AF, Shigematsu H, Herz J, Minna JD . (2004). Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med 10: 481–486.

    CAS  PubMed  Google Scholar 

  • Giaccone G, Gallegos Ruiz M, Le Chevalier T, Thatcher N, Smit E, Rodriguez JA et al. (2006). Erlotinib for frontline treatment of advanced NSCLC: a phase II study. Clin Cancer Res 12: 6049–6055.

    CAS  PubMed  Google Scholar 

  • Gow CH, Shih JY, Chang YL, Yu CJ . (2005). Acquired gefitinib-resistant mutation of EGFR in a chemo-naive lung adenocarcinoma harboring gefitinib-sensitive mutation L858R. PLoS Med 2: e269.

    PubMed  PubMed Central  Google Scholar 

  • Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2: e313.

    PubMed  PubMed Central  Google Scholar 

  • Harari PM . (2004). EGFR inhibition strategies in oncology. Endocr Relat Cancer 11: 689–708.

    CAS  PubMed  Google Scholar 

  • Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V, Herbst R . (2006). EGFR inhibitors in development for the treatment of NSCLC. Clin Cancer Res 12: 4441s–4445s.

    CAS  PubMed  Google Scholar 

  • Hirsch FR, Varella-Garcia M, Bunn Jr PA, Franklin WA, Dziadziuszko R, Thatcher N et al. (2006). Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced NSCLC. J Clin Oncol 24: 5034–5042.

    CAS  PubMed  Google Scholar 

  • Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J et al. (2006). Presence of EGFR gene T790M mutation as a minor clone in NSCLC. Cancer Res 66: 7854–7858.

    CAS  PubMed  Google Scholar 

  • Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA . (2006). Exon 19 deletion mutations of EGFR are associated with prolonged survival in NSCLC patients treated with gefitinib or erlotinib. Clin Cancer Res 12: 3908–3914.

    CAS  PubMed  Google Scholar 

  • Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G . (2006). Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or PI3K pathways in NSCLC cells. Int J Cancer 118: 209–214.

    CAS  PubMed  Google Scholar 

  • Janne PA, Engelman JA, Johnson BE . (2005). EGFR mutations in NSCLC: implications for treatment and tumor biology. J Clin Oncol 23: 3227–3234.

    CAS  PubMed  Google Scholar 

  • Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K et al. (2006). The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9: 485–495.

    CAS  PubMed  Google Scholar 

  • Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD . (2005). EGF-independent transformation of Ba/F3 cells with cancer-derived EGFR mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 65: 8968–8974.

    CAS  PubMed  Google Scholar 

  • Johnson BE, Janne PA . (2005). Selecting patients for EGFR inhibitor treatment: A FISH story or a tale of mutations? J Clin Oncol 23: 6813–6816.

    CAS  PubMed  Google Scholar 

  • Jones RB, Gordus A, Krall JA, MacBeath G . (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439: 168–174.

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. (2005a). EGFR mutation and resistance of NSCLC to gefitinib. N Engl J Med 352: 786–792.

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Ji H, Yuza Y, Meyerson M, Wong KK, Tenen DG et al. (2005b). An alternative inhibitor overcomes resistance caused by a mutation of the EGFR. Cancer Res 65: 7096–7101.

    CAS  PubMed  Google Scholar 

  • Kokubo Y, Gemma A, Noro R, Seike M, Kataoka K, Matsuda K et al. (2005). Reduction of PTEN protein and loss of EGFR gene mutation in lung cancer with natural resistance to gefitinib. Br J Cancer 92: 1711–1719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. (2005). Irreversible inhibitors of the EGFR may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102: 7665–7670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Soung YH, Kim SY, Nam HK, Park WS, Nam SW et al. (2005). Somatic mutations of EGFR gene in SCCHN. Clin Cancer Res 11: 2879–2882.

    CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004a). Activating mutations in the EGFR underlying responsiveness of NSCLC to gefitinib. N Engl J Med 350: 2129–2139.

    CAS  PubMed  Google Scholar 

  • Lynch TJ, Lilenbaum RC, Bonomi P, Ansari R, Govindan R, Janne PA et al. (2004b). A phase II trial of cetuximab as therapy for recurrent NSCLC. 40th Annual Meeting of the American Society of Clinical Oncology; 5–8 June 2004 New Orleans: USA.

    Google Scholar 

  • Marchetti A, Felicioni L, Buttitta F . (2006). Assessing EGFR mutations. N Engl J Med 354: 526–528.

    CAS  PubMed  Google Scholar 

  • Mellstedt H . (2003). Monoclonal antibodies in human cancer. Drugs Today 39: 1–16.

    CAS  Google Scholar 

  • Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S et al. (2005). Mutations of the EGFR gene predict prolonged survival after gefitinib treatment in patients with NSCLC with postoperative recurrence. J Clin Oncol 23: 2513–2520.

    CAS  PubMed  Google Scholar 

  • Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW et al. (1995). Frequent expression of a mutant EGFR in multiple human tumors. Cancer Res 55: 5536–5539.

    CAS  PubMed  Google Scholar 

  • Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on NSCLC bearing EGFR mutations. J Natl Cancer Inst 97: 1185–1194.

    CAS  PubMed  Google Scholar 

  • Nagai Y, Miyazawa H, Huqun, Tanaka T, Udagawa K, Kato M et al. (2005). Genetic heterogeneity of the EGFR in NSCLC cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 65: 7276–7282.

    CAS  PubMed  Google Scholar 

  • Niho S, Kubota K, Goto K, Yoh K, Ohmatsu H, Kakinuma R et al. (2006). First-line single agent treatment with gefitinib in patients with advanced NSCLC: a phase II study. J Clin Oncol 24: 64–69.

    CAS  PubMed  Google Scholar 

  • Noble ME, Endicott JA, Johnson LN . (2004). Protein kinase inhibitors: insights into drug design from structure. Science 303: 1800–1805.

    CAS  PubMed  Google Scholar 

  • Normanno N, Bianco C, Strizzi L, Mancino M, Maiello MR, De Luca A et al. (2005). The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6: 243–257.

    CAS  PubMed  Google Scholar 

  • Okamoto I, Kenyon LC, Emlet DR, Mori T, Sasaki J, Hirosako et al. (2003). Expression of constitutively activated EGFRvIII in NSCLC. Cancer Sci 94: 50–56.

    CAS  PubMed  Google Scholar 

  • Oliveira S, van Bergen en Henegouwen PM, Storm G, Schiffelers RM . (2006). Molecular biology of EGFR inhibition for cancer therapy. Expert Opin Biol Ther 6: 605–617.

    CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA . (2005). EGFR mutations, small-molecule kinase inhibitors, and NSCLC: current knowledge and future directions. J Clin Oncol 23: 2556–2568.

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. (2005a). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2: e73.

    PubMed  PubMed Central  Google Scholar 

  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. (2004). EGFR gene mutations are common in lung cancers from ‘never-smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101: 13306–13311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. (2005b). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2: e17.

    PubMed  PubMed Central  Google Scholar 

  • Pawson T, Gish GD, Nash P . (2001). SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11: 504–511.

    CAS  PubMed  Google Scholar 

  • Paz-Ares L, Sanchez JM, Garcia-Velasco A, Massuti B, Lopez-Vivanco G, Provencio M et al. (2006). A prospective phase II trail of erlotinib in advanced NSCLC patients with mutations in the TK domain of the EGFR. 42nd Annual Meeting of the American Society of Clinical Oncology; 2–6 June 2006 Atlanta: USA.

    Google Scholar 

  • Pedersen MW, Meltorn M, Damstrup L, Poulsen HS . (2001). The type III EGFR mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 12: 745–760.

    CAS  PubMed  Google Scholar 

  • Perez-Torres M, Guix M, Gonzalez A, Arteaga CL . (2006). EGFR antibody downregulates mutant receptors and inhibits tumors expressing EGFR mutations. J Biol Chem 281: 40183–40192.

    CAS  PubMed  Google Scholar 

  • Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE . (2006). Lung adenocarcinomas induced in mice by mutant EGFR found in human lung cancers respond to a tyrosine kinase inhibitor or to downregulation of the receptors. Genes Dev 20: 1496–1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K et al. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol 209: 445–453.

    CAS  PubMed  Google Scholar 

  • Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES et al. (2006). Clinical course of patients with NSCLC and EGFR exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 12: 839–844.

    CAS  PubMed  Google Scholar 

  • Robertson J, Gutteridge E, Cheung KR, Owers MK, Hamilton L, Gee J et al. (2003). 39th Annual Meeting of the American Society of Clinical Oncology; 31 May-3 June 2003 Chicago: USA.

    Google Scholar 

  • Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T et al. (2002). Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100: 1014–1018.

    CAS  PubMed  Google Scholar 

  • Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH . (1983). Biological effects in vitro of monoclonal antibodies to human EGFR. Mol Biol Med 1: 511–529.

    CAS  PubMed  Google Scholar 

  • Shepherd FA, Tsao MS . (2006). Unraveling the mystery of prognostic and predictive factors in EGFR therapy. J Clin Oncol 24: 1219–1220.

    PubMed  Google Scholar 

  • Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II et al. (2005a). Clinical and biological features associated with EGFR gene mutations in lung cancers. J Natl Cancer Inst 97: 339–346.

    CAS  PubMed  Google Scholar 

  • Shimamura T, Lowell AM, Engelman JA, Shapiro GI . (2005). EGFR harboring kinase domain mutations associate with the Hsp90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65: 6401–6408.

    CAS  PubMed  Google Scholar 

  • Sihto H, Puputti M, Pulli L, Tynninen O, Koskinen W, Aaltonen LM et al. (2005). EGFR domain II, IV, and kinase domain mutations in human solid tumors. J Mol Med 83: 976–983.

    CAS  PubMed  Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.

    CAS  PubMed  Google Scholar 

  • Sordella R, Bell DW, Haber DA, Settleman J . (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305: 1163–1167.

    CAS  PubMed  Google Scholar 

  • Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U et al. (2005). EGFR gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent NSCLC. J Clin Oncol 23: 6829–6837.

    CAS  PubMed  Google Scholar 

  • Toyooka S, Kiura K, Mitsudomi T . (2005). EGFR mutation and response of lung cancer to gefitinib. N Engl J Med 352: 2136.

    CAS  PubMed  Google Scholar 

  • Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, Janne PA . (2004). Gefitinib induces apoptosis in the EGFR-L858R NSCLC cell line H3255. Cancer Res 64: 7241–7244.

    CAS  PubMed  Google Scholar 

  • Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J et al. (2005). Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl J Med 353: 133–144.

    CAS  PubMed  Google Scholar 

  • Tsuchihashi Z, Khambata-Ford S, Hanna N, Janne PA . (2005). Responsiveness to cetuximab without mutations in EGFR. N Engl J Med 353: 208–209.

    CAS  PubMed  Google Scholar 

  • Worthylake R, Opresko LK, Wiley HS . (1999). ErbB-2 amplification inhibits downregulation and induces constitutive activation of both ErbB-2 and EGFR. J Biol Chem 274: 8865–8874.

    CAS  PubMed  Google Scholar 

  • Yarden Y . (2001). The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer 37: S3–S8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We offer our apologies to scientists whose work we could not appreciate due to space limitation. We are grateful to Merck KGaA for supporting our work and to all colleagues who critically reviewed this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Blaukat.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irmer, D., Funk, J. & Blaukat, A. EGFR kinase domain mutations – functional impact and relevance for lung cancer therapy. Oncogene 26, 5693–5701 (2007). https://doi.org/10.1038/sj.onc.1210383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210383

Keywords

This article is cited by

Search

Quick links