Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells

Abstract

The hedgehog (Hh) signaling pathway regulates progenitor cells during embryogenesis and tumorigenesis in multiple organ systems. We have investigated the activity of this pathway in adult gliomas, and demonstrate that the Hh pathway is operational and activated within grade II and III gliomas, but not grade IV de novo glioblastoma multiforme. Furthermore, our studies reveal that pathway activity and responsiveness is confined to progenitor cells within these tumors. Additionally, we demonstrate that Hh signaling in glioma progenitor cells is ligand-dependent and provide evidence documenting the in vivo source of Sonic hedgehog protein. These findings suggest a regulatory role for the Hh pathway in progenitor cells within grade II and III gliomas, and the potential clinical utility of monitoring and targeting this pathway in these primary brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahn S, Joyner AL . (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437: 894–897.

    Article  CAS  Google Scholar 

  • American Cancer Society. (2004). Cancer facts and figures.

  • Azzarelli B, Miravalle L, Vidal R . (2004). Immunolocalization of the oligodendrocyte transcription factor 1 (Olig1) in brain tumors. J Neuropathol Exp Neurol 63: 170–179.

    Article  CAS  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66: 7843–7848.

    Article  CAS  Google Scholar 

  • Beachy PA, Karhadkar SS, Berman DM . (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.

    Article  CAS  Google Scholar 

  • Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL et al. (1998). Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4: 387–397.

    Article  CAS  Google Scholar 

  • Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. (2003). Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425: 846–851.

    Article  CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA . (2002a). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16: 2743–2748.

    Article  CAS  Google Scholar 

  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . (2002b). Small molecule modulation of smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076.

    Article  CAS  Google Scholar 

  • Cooper MK, Porter JA, Young KE, Beachy PA . (1998). Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280: 1603–1607.

    Article  CAS  Google Scholar 

  • Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M et al. (2001). The Sonic Hedgehog–Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128: 5201–5212.

    CAS  Google Scholar 

  • Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R et al. (2004). Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145: 3961–3970.

    Article  CAS  Google Scholar 

  • Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H et al. (2002). Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 1: 10.

    Article  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–7021.

    Article  CAS  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183.

    Article  CAS  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  Google Scholar 

  • Katayama M, Yoshida K, Ishimori H, Katayama M, Kawase T, Motoyama J et al. (2002). Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 59: 107–115.

    Article  Google Scholar 

  • Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC et al. (2002). The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61: 215–225 ; discussion 226–229..

    Article  Google Scholar 

  • Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC . (1995). Histopathology, classification, and grading of gliomas. Glia 15: 211–221.

    Article  CAS  Google Scholar 

  • Lai K, Kaspar BK, Gage FH, Schaffer DV . (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6: 21–27.

    Article  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.

    Article  CAS  Google Scholar 

  • Ligon KL, Fancy SP, Franklin RJ, Rowitch DH . (2006). Olig gene function in CNS development and disease. Glia 54: 1–10.

    Article  Google Scholar 

  • Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A et al. (2006). Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 66: 11502–11513.

    Article  CAS  Google Scholar 

  • Mokhtari K, Paris S, Aguirre-Cruz L, Privat N, Criniere E, Marie Y et al. (2005). Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol Appl Neurobiol 31: 62–69.

    Article  CAS  Google Scholar 

  • Oh S, Huang X, Chiang C . (2005). Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dyn 234: 489–496.

    Article  CAS  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. (2004). Genetic pathways to glioblastoma: a population-based study. Cancer Res 64: 6892–6899.

    Article  CAS  Google Scholar 

  • Sanai N, Alvarez-Buylla A, Berger MS . (2005). Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–822.

    Article  CAS  Google Scholar 

  • Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 101: 12561–12566.

    Article  CAS  Google Scholar 

  • Singh SK, Clarke ID, Hide T, Dirks PB . (2004a). Cancer stem cells in nervous system tumors. Oncogene 23: 7267–7273.

    Article  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004b). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406: 1005–1009.

    Article  CAS  Google Scholar 

  • Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422: 313–317.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Peter Konrad, Matthew Pearson and Kyle Weaver for brain specimens, to Ken Niermann, John Floyd, Khubaib Mapara, Karen Deal, Larry Pierce, Charles Stevenson and Justin Bachmann for sample collections, Darren Orten, Sam Saleh and Vandana Grover for synthesis of SAG and Michael Edgeworth for assistance with statistical analyses. This work was supported by grants from the NINDS (R01 NS051557, ME and K08 NS02133, MKC), the Burroughs Wellcome Fund (MKC) and the Doris Duke Charitable Foundation (MKC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K Cooper.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehtesham, M., Sarangi, A., Valadez, J. et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26, 5752–5761 (2007). https://doi.org/10.1038/sj.onc.1210359

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210359

Keywords

This article is cited by

Search

Quick links