Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Orchestration of chromatin-based processes: mind the TRRAP

Abstract

Chromatin modifications at core histones including acetylation, methylation, phosphorylation and ubiquitination play an important role in diverse biological processes. Acetylation of specific lysine residues within the N terminus tails of core histones is arguably the most studied histone modification; however, its precise roles in different cellular processes and how it is disrupted in human diseases remain poorly understood. In the last decade, a number of histone acetyltransferases (HATs) enzymes responsible for histone acetylation, has been identified and functional studies have begun to unravel their biological functions. The activity of many HATs is dependent on HAT complexes, the multiprotein assemblies that contain one HAT catalytic subunit, adapter proteins, several other molecules of unknown function and a large protein called TRansformation/tRanscription domain-Associated Protein (TRRAP). As a common component of many HAT complexes, TRRAP appears to be responsible for the recruitment of these complexes to chromatin during transcription, replication and DNA repair. Recent studies have shed new light on the role of TRRAP in HAT complexes as well as mechanisms by which it mediates diverse cellular processes. Thus, TRRAP appears to be responsible for a concerted and context-dependent recruitment of HATs and coordination of distinct chromatin-based processes, suggesting that its deregulation may contribute to diseases. In this review, we summarize recent developments in our understanding of the function of TRRAP and TRRAP-containing HAT complexes in normal cellular processes and speculate on the mechanism underlying abnormal events that may lead to human diseases such as cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abraham RT . (2004). PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3: 883–887.

    Article  CAS  Google Scholar 

  • Aggarwal BD, Calvi BR . (2004). Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372–376.

    Article  CAS  PubMed  Google Scholar 

  • Akhtar A, Becker PB . (2000). Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ et al. (1999). NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18: 5108–5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE . (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. (2005). c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Ard PG, Chatterjee C, Kunjibettu S, Adside LR, Gralinski LE, McMahon SB . (2002). Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol Cell Biol 22: 5650–5661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM et al. (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8: 532–538.

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    Article  CAS  PubMed  Google Scholar 

  • Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA et al. (2005). Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaumik SR, Raha T, Aiello DP, Green MR . (2004). In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev 18: 333–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienz M, Clevers H . (2003). Armadillo/beta-catenin signals in the nucleus – proof beyond a reasonable doubt? Nat Cell Biol 5: 179–182.

    Article  CAS  PubMed  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL . (2000). FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25: 225–227.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M et al. (2001). Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15: 2042–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J et al. (2001). UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20: 3187–3196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand M, Yamamoto K, Staub A, Tora L . (1999). Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274: 18285–18289.

    Article  CAS  PubMed  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S et al. (2001). Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292: 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  • Brown CE, Lechner T, Howe L, Workman JL . (2000). The many HATs of transcription coactivators. Trends Biochem Sci 25: 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.

    Article  CAS  PubMed  Google Scholar 

  • Burke TW, Cook JG, Asano M, Nevins JR . (2001). Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276: 15397–15408.

    Article  CAS  PubMed  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J . (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19: 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A et al. (2003). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5: 675–679.

    Article  CAS  PubMed  Google Scholar 

  • Ceol CJ, Horvitz HR . (2004). A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev Cell 6: 563–576.

    Article  CAS  PubMed  Google Scholar 

  • Cheng AS, Jin VX, Fan M, Smith LT, Liyanarachchi S, Yan PS et al. (2006). Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell 21: 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P . (2000a). Signaling to chromatin through histone modifications. Cell 103: 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Cheung WL, Briggs SD, Allis CD . (2000b). Acetylation and chromosomal functions. Curr Opin Cell Biol 12: 326–333.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J . (2005). gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20: 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Choy JS, Kron SJ . (2002). NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol 22: 8215–8225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimbora DM, Schubeler D, Reik A, Hamilton J, Francastel C, Epner EM et al. (2000). Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol Cell Biol 20: 5581–5591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Davis AC, Wims M, Spotts GD, Hann SR, Bradley A . (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7: 671–682.

    Article  CAS  PubMed  Google Scholar 

  • de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA . (2005). Do protein motifs read the histone code? Bioessays 27: 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Deleu L, Shellard S, Alevizopoulos K, Amati B, Land H . (2001). Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20: 8270–8275.

    Article  CAS  PubMed  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990.

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51–64.

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Cote J . (2004). Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumon-Jones V, Frappart PO, Tong WM, Sajithlal G, Hulla W, Schmid G et al. (2003). Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res 63: 7263–7269.

    CAS  PubMed  Google Scholar 

  • Durrin LK, Mann RK, Kayne PS, Grunstein M . (1991). Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Gradl D, Kunz M, Eilers M, Wedlich D . (2005). Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-myc and Miz-1. Mech Dev 122: 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Yanase T, Wu Y, Kawate H, Saitoh M, Oba K et al. (2004). Protein kinase A potentiates adrenal 4 binding protein/steroidogenic factor 1 transactivation by reintegrating the subcellular dynamic interactions of the nuclear receptor with its cofactors, general control nonderepressed-5/transformation/transcription domain-associated protein, and suppressor, dosage-sensitive sex reversal-1: a laser confocal imaging study in living KGN cells. Mol Endocrinol 18: 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Lee N, Fearon ER . (2003). TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Cancer Res 63: 8726–8734.

    CAS  PubMed  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, Livingston DM et al. (1996). E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85: 549–561.

    Article  CAS  PubMed  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A et al. (2005). An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11: 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V et al. (2001). The p400 complex is an essential E1A transformation target. Cell 106: 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S et al. (2000). Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell 5: 927–937.

    Article  CAS  PubMed  Google Scholar 

  • Gause M, Eissenberg JC, Macrae AF, Dorsett M, Misulovin Z, Dorsett D . (2006). Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 26: 2347–2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Yates III JR, Workman JL . (1998). The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2: 863–867.

    Article  CAS  PubMed  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ et al. (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111: 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG . (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Herceg Z, Hulla W, Gell D, Cuenin C, Lleonart M, Jackson S et al. (2001). Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nat Genet 29: 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Herceg Z, Li H, Cuenin C, Shukla V, Radolf M, Steinlein P et al. (2003). Genome-wide analysis of gene expression regulated by the HAT cofactor Trrap in conditional knockout cells. Nucleic Acids Res 31: 7011–7023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herceg Z, Wang ZQ . (2005). Rendez-vous at mitosis: TRRAPed in the chromatin. Cell Cycle 4: 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Hunter T . (1995). When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio Jr RA, Gorgoulis VG, Zacharatos P, Petty TJ et al. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Iizuka M, Matsui T, Takisawa H, Smith MM . (2006). Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26: 1098–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Stillman B . (1999). Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274: 23027–23034.

    Article  CAS  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M et al. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri A, McAinsh AD, Jackson SP . (2004). Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci USA 101: 1644–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Sun Y, Chen S, Roy K, Price BD . (2006). The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J Biol Chem 281: 15741–15746.

    Article  CAS  PubMed  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G . (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216: 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Keith CT, Schreiber SL . (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270: 50–51.

    Article  CAS  PubMed  Google Scholar 

  • Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC et al. (2006). A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Khorasanizadeh S . (2004). The nucleosome: from genomic organization to genomic regulation. Cell 116: 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C et al. (2005). Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta–catenin complexes. Nature 434: 921–926.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T . (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulesza CA, Van Buskirk HA, Cole MD, Reese JC, Smith MM, Engel DA . (2002). Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Oncogene 21: 1411–1422.

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M . (2003). Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates III JR et al. (2004). Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306: 2084–2087.

    Article  CAS  PubMed  Google Scholar 

  • Lang SE, Hearing P . (2003). The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. Oncogene 22: 2836–2841.

    Article  CAS  PubMed  Google Scholar 

  • Lang SE, McMahon SB, Cole MD, Hearing P . (2001). E2F transcriptional activation requires TRRAP and GCN5 cofactors. J Biol Chem 276: 32627–32634.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Cuenin C, Murr R, Wang ZQ, Herceg Z . (2004). HAT cofactor Trrap regulates the mitotic checkpoint by modulation of Mad1 and Mad2 expression. EMBO J 23: 4824–4834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CM, Fu H, Martinovsky M, Bouhassira E, Aladjem MI . (2003). Dynamic alterations of replication timing in mammalian cells. Curr Biol 13: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Dent SY . (2006). Functions of histone-modifying enzymes in development. Curr Opin Genet Dev 16: 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loizou JI, Murr R, Finkbeiner MG, Sawan C, Wang ZQ, Herceg Z . (2006). Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5: 696–701.

    Article  CAS  PubMed  Google Scholar 

  • Loukopoulos P, Shibata T, Katoh H, Kokubu A, Sakamoto M, Yamazaki K et al. (2007). Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 98: 392–400.

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A et al. (1999). Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96: 7376–7381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks PA, Richon VM, Kelly WK, Chiao JH, Miller T . (2004). Histone deacetylase inhibitors: development as cancer therapy. Novartis Found Symp 259: 269–281 (discussion 281--288).

    CAS  PubMed  Google Scholar 

  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK et al. (2001). Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21: 6782–6795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374.

    Article  CAS  PubMed  Google Scholar 

  • McMahon SB, Wood MA, Cole MD . (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megee PC, Morgan BA, Mittman BA, Smith MM . (1990). Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247: 841–845.

    Article  CAS  PubMed  Google Scholar 

  • Megee PC, Morgan BA, Smith MM . (1995). Histone H4 and the maintenance of genome integrity. Genes Dev 9: 1716–1727.

    Article  CAS  PubMed  Google Scholar 

  • Memedula S, Belmont AS . (2003). Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16. Curr Biol 13: 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Morgan BA, Mittman BA, Smith MM . (1991). The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol 11: 4111–4120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119: 767–775.

    Article  CAS  PubMed  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Myster SH, Wang F, Cavallo R, Christian W, Bhotika S, Anderson CT et al. (2004). Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin–euchromatin junction. Genetics 166: 807–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforov MA, Chandriani S, Park J, Kotenko I, Matheos D, Johnsson A et al. (2002). TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol Cell Biol 22: 5054–5063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourani A, Doyon Y, Utley RT, Allard S, Lane WS, Cote J . (2001). Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol Cell Biol 21: 7629–7640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi H, Kitagawa H, Wada O, Takezawa S, Tora L, Kouzu-Fujita M et al. (2006). An hGCN5/TRRAP histone acetyltransferase complex co-activates BRCA1 transactivation function through histone modification. J Biol Chem 281: 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P et al. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19: 6141–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Kunjibettu S, McMahon SB, Cole MD . (2001). The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev 15: 1619–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Wood MA, Cole MD . (2002). BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol 22: 1307–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry P, Sauer S, Billon N, Richardson WD, Spivakov M, Warnes G et al. (2004). A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3: 1645–1650.

    Article  CAS  PubMed  Google Scholar 

  • Peterson CL, Cote J . (2004). Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602–616.

    Article  CAS  PubMed  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    Article  CAS  PubMed  Google Scholar 

  • Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG et al. (2002). The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22: 8774–8786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Parthun MR . (2002). Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22: 8353–8365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid JL, Iyer VR, Brown PO, Struhl K . (2000). Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6: 1297–1307.

    Article  CAS  PubMed  Google Scholar 

  • Robert F, Hardy S, Nagy Z, Baldeyron C, Murr R, Dery U et al. (2006). The transcriptional histone acetyltransferase cofactor TRRAP associates with the MRN repair complex and plays a role in DNA double-strand break repair. Mol Cell Biol 26: 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates III JR et al. (1998). Tra1p is a component of the yeast Ada. Spt transcriptional regulatory complexes. J Biol Chem 273: 26559–26565.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL . (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Sierra J, Yoshida T, Joazeiro CA, Jones KA . (2006). The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20: 586–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M, Hieter P . (1990). A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Smerdon MJ, Lan SY, Calza RE, Reeves R . (1982). Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J Biol Chem 257: 13441–13447.

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Gafken PR, Zhang Z, Gottschling DE, Smith JB, Smith DL . (2003). Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Anal Biochem 316: 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Squatrito M, Gorrini C, Amati B . (2006). Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Sterner DE, Belotserkovskaya R, Berger SL . (2002). SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc Natl Acad Sci USA 99: 11622–11627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD . (2000). The language of covalent histone modifications. Nature 403: 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD . (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamburini BA, Tyler JK . (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25: 4903–4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827–839.

    Article  CAS  PubMed  Google Scholar 

  • Taubert S, Gorrini C, Frank SR, Parisi T, Fuchs M, Chan HM et al. (2004). E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol 24: 4546–4556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiriet C, Hayes JJ . (2005). Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK et al. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Unno A, Takada I, Takezawa S, Oishi H, Baba A, Shimizu T et al. (2005). TRRAP as a hepatic coactivator of LXR and FXR function. Biochem Biophys Res Commun 327: 933–938.

    Article  CAS  PubMed  Google Scholar 

  • Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Cote J . (2005). Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25: 8179–8190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerie K, Povirk LF . (2003). Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792–5812.

    Article  CAS  PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM . (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119: 777–788.

    Article  CAS  PubMed  Google Scholar 

  • van Attikum H, Gasser SM . (2005a). ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4: 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  • van Attikum H, Gasser SM . (2005b). The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6: 757–765.

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch M, Bree RT, Lowndes NF . (2003). The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4: 844–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev A, Yamauchi J, Kotani T, Prives C, Avantaggiati ML, Qin J et al. (1998). The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol Cell 2: 869–875.

    Article  CAS  PubMed  Google Scholar 

  • Vignali M, Steger DJ, Neely KE, Workman JL . (2000). Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J 19: 2629–2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M . (2002). Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Wood MA, McMahon SB, Cole MD . (2000). An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Workman JL, Kingston RE . (1998). Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67: 545–579.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Weaver DT . (1997). Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 25: 2985–2991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY . (2000). Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26: 229–232.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N et al. (2000). Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA 97: 11303–11306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa J, Kitagawa H, Yanagida M, Wada O, Ogawa S, Nakagomi M et al. (2002). Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. Mol Cell 9: 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ . (2004). The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32: 959–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Ahsan H, Chen Y, Lunn RM, Wang LY, Chen SY et al. (2002). High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol Carcinog 35: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A . (2001). Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11: 105–109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to many colleagues whose relevant works were not cited owing to space limitations. We thank Dr Uzma Hasan for critical reading of the manuscript. RM is supported by a PhD fellowship from la Ligue Nationale (Française) Contre le Cancer, France. The work by Z Herceg's team is supported by the National Institutes of Health/National Cancer Institute (NIH/NCI), USA; Association for International Cancer Research (AICR), UK; Institut National du Cancer (Epigenetic profiling Network, EpiPro), France; L’Association pour la Recherche sur le Cancer (ARC), France; la Ligue Nationale (Française) Contre le Cancer, France; the European Network of Excellence Environmental Cancer Risk, Nutrition and Individual Susceptibility (ECNIS) and the Swiss Bridge Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Herceg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murr, R., Vaissière, T., Sawan, C. et al. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26, 5358–5372 (2007). https://doi.org/10.1038/sj.onc.1210605

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210605

Keywords

This article is cited by

Search

Quick links