Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras effector pathways modulate scatter factor-stimulated NF-κB signaling and protection against DNA damage

Abstract

Scatter factor (SF) (hepatocyte growth factor) is a pleiotrophic cytokine that accumulates within tumors in vivo and protects tumor cells against cytotoxicity and apoptosis due to DNA damaging agents in vitro. Previous studies have established that SF-mediated cell protection involves antiapoptotic signaling from its receptor (c-Met) to PI3 kinase → c-Akt → Pak1 (p21-activated kinase -1) → NF-κB (nuclear factor-kappa B). Here, we found that Ras proteins (H-Ras and R-Ras) enhance SF-mediated activation of NF-κB and protection of DU-145 and MDCK (Madin–Darby canine kidney) cells against the topoisomerase IIα inhibitor adriamycin. Studies of Ras effector loop mutants and their downstream effectors suggest that Ras/PI3 kinase and Ras/Raf1 pathways contribute to SF stimulation of NF-κB signaling and cell protection. Further studies revealed that Raf1 positively regulates the ability of SF to stimulate NF-κB activity and cell protection. The ability of Raf1 to stimulate NF-κB activity was not due to the classical Raf1 → MEK1/2 → ERK1/2 pathway. However, we found that a MEK3/6 → p38 pathway contributes to SF-mediated activation of NF-κB. In contrast, RalA, a target of the Ras/RalGDS pathway negatively regulated the ability of SF to stimulate NF-κB activity and cell protection. Ras, Raf1 and RalA modulate SF stimulation of NF-κB activity, in part, by regulating IκB kinase (IKK)-β kinase activity. These findings suggest that Ras/Raf1/RalA pathways may converge to modulate NF-κB activation and SF-mediated survival signaling at the IKK complex and/or a kinase upstream of this complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA . (1993). Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 12: 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL et al. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589–601.

    CAS  PubMed  Google Scholar 

  • Bardelli A, Longatti P, Albero D, Goruppi S, Schneider C, Ponzetto C et al. (1996). HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15: 6205–6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR et al. (2000). Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 97: 4615–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804.

    Article  CAS  PubMed  Google Scholar 

  • Bowers DC, Fan S, Walter K, Abounader R, Williams JA, Rosen EM et al. (2000). Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60: 4277–4283.

    CAS  PubMed  Google Scholar 

  • Camonis JH, White MA . (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends Cell Biol 15: 327–332. (Review).

    Article  CAS  PubMed  Google Scholar 

  • Cantor SB, Urano T, Feig LA . (1995). Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 15: 4578–4584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HH, Benson DR, Schultz PG . (1993). Probing the structure and mechanism of Ras protein with an expanded genetic code. Science 259: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI et al. (1997). Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11: 1881–1890.

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V . (2005). Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25: 141–156.

    Article  CAS  PubMed  Google Scholar 

  • de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S et al. (1988). Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239: 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al. (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749–1766.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID et al. (2001). The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 21: 4968–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Ma YX, Wang J-A, Yuan R-Q, Meng Q, Laterra JJ et al. (2000). The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′ kinase. Oncogene 19: 2212–2223.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Wang J-A, Yuan R-Q, Rockwell S, Andres J, Zlatapolskiy A et al. (1998). Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 17: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald EM . (2000). Regulation of voltage-dependent calcium channels in rat sensory neurones involves a Ras-mitogen-activated protein kinase pathway. J Physiol 527: 433–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch SM, Francis H . (1994). Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124: 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Graziani A, Gramaglia D, dalla Zonca P, Comoglio PM . (1993). Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268: 9165–9168.

    CAS  PubMed  Google Scholar 

  • Herrmann C . (2003). Ras-effector interactions: after one decade. Curr Opin Struct Biol 13: 122–129. (Review).

    Article  CAS  PubMed  Google Scholar 

  • Hofer F, Fields S, Schneider C, Martin GS . (1994). Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA 91: 11089–11093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Wang Y . (1998). IkappaB kinase-alpha and -beta genes are coexpressed in adult and embryonic tissues but localized to different human chromosomes. Gene 222: 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Fuchs A, Schnitt SJ, Yao Y, Joseph A, Lamszus K et al. (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79: 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Kraus MH, Yuasa Y, Aaronson SA . (1984). A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81: 5384–5388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret F-X, Lange-Carter C, Mercurio F et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J et al. (1998). Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci USA 95: 3632–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteucci E, Modora S, Simone M, Desiderio MA . (2003). Hepatocyte growth factor induces apoptosis through the extrinsic pathway in hepatoma cells: favouring role of hypoxia-inducible factor-1 deficiency. Oncogene 22: 4062–4073.

    Article  CAS  PubMed  Google Scholar 

  • May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S . (2000). Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289: 1550–1554.

    Article  CAS  PubMed  Google Scholar 

  • McFarlin DR, Lindstrom MJ, Gould MN . (2003). Affinity with Raf is sufficient for Ras to efficiently induce rat mammary carcinomas. Carcinogenesis 24: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S et al. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247: 939–945.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Ohba Y, Kobayashi S, Otsuka N, Graybiel AM, Tanaka S et al. (2000). Crk activation of JNK via C3G and R-Ras. J Biol Chem 275: 12667–12671.

    Article  CAS  PubMed  Google Scholar 

  • Mody N, Campbell DG, Morrice N, Peggie M, Cohen P . (2003). An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J 372: 567–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A . (1993). Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260: 1658–1661.

    Article  CAS  PubMed  Google Scholar 

  • Murai H, Ikeda M, Kishida S, Ishida O, Okazaki-Kishida M, Matsuura Y et al. (1997). Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J Biol Chem 272: 10483–10490.

    Article  CAS  PubMed  Google Scholar 

  • Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC et al. (1999). Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103: 851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxford G, Owens CR, Titus BJ, Foreman TL, Herlevsen MC, Smith SC et al. (2005). RalA and RalB: antagonistic relatives in cancer cell migration. Cancer Res 65: 7111–7120.

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Provot S, Felder-Schmittbuhl MP, Calothy G, Eychene A . (2000). Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Mol Cell Biol 20: 7068–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Anwar KN, Minhajuddin M, Bijli KM, Javaid K, True AL et al. (2004). cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 287: L1017–L1024.

    Article  CAS  PubMed  Google Scholar 

  • Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ . (1996). MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16: 1247–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P et al. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.

    Article  CAS  PubMed  Google Scholar 

  • Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID . (1997). HGF/SF in angiogenesis. Ciba Found Symp 212: 215–226.

    CAS  PubMed  Google Scholar 

  • Shao H, Kadono-Okuda K, Finlin BS, Andres DA . (1999). Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch Biochem Biophys 371: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX et al. (2001). Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci USA 98: 8774–8779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song KS, Seong JK, Chung KC, Lee WJ, Kim CH, Cho KN et al. (2003). Induction of MUC8 gene expression by interleukin-1 beta is mediated by a sequential ERK MAPK/RSK1/CREB cascade pathway in human airway epithelial cells. J Biol Chem 278: 34890–34896.

    Article  CAS  PubMed  Google Scholar 

  • Stewart S, Guan KL . (2000). The dominant-negative Ras mutant, N17Ras, can inhibit signaling independently of blocking Ras activation. J Biol Chem 275: 8854–8862.

    Article  CAS  PubMed  Google Scholar 

  • Stuckler D, Singhal J, Singhal SS, Yadav S, Awasthi YC, Awasthi S . (2005). RLIP76 transports vinorelbine and mediates drug resistance in non-small cell lung cancer. Cancer Res 65: 991–998.

    CAS  PubMed  Google Scholar 

  • Tulasne D, Paumelle R, Weidner KM, Vandenbunder B, Fafeur V . (1999). The multisubstrate docking site of the MET receptor is dispensable for MET-mediated RAS signaling and cell scattering. Mol Biol Cell 10: 551–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale N, Mawet J, Camonis J, Regazzi R, Bader MF, Chasserot-Golaz S . (2005). The small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J Biol Chem 280: 29921–29928.

    Article  CAS  PubMed  Google Scholar 

  • Vojtek AB, Hollenberg SM, Cooper JA . (1993). Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Voss M, Weernink PA, Haupenthal S, Moller U, Cool RH, Bauer B et al. (1999). Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 274: 34691–34698.

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J et al. (1997). Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272: 23668–23674.

    Article  CAS  PubMed  Google Scholar 

  • Webb CP, Van Aelst L, Wigler MH, Woude GF . (1998). Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci USA 95: 8773–8778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M et al. (1995). Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth S, Kiel C, Kramer A, Serrano L, Wittinghofer F, Herrmann C . (2005). Recognizing and defining true Ras binding domains I: biochemical analysis. J Mol Biol 348: 741–758.

    Article  CAS  PubMed  Google Scholar 

  • Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV . (1997). IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278: 866–869.

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Templeton DJ . (1994). Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase. J Biol Chem 269: 19067–19073.

    CAS  PubMed  Google Scholar 

  • Yang JJ, Kang JS, Krauss RS . (1998). Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol Cell Biol 18: 2586–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng CF, Guan KL . (1993). Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J Biol Chem 268: 23933–23939.

    CAS  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–1545.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sources of support: This work is supported, in part, by United States Public Health Service Grants RO1-ES09169 (EMR) and RO1-NS43987 (JJL/EMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E M Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Meng, Q., Laterra, J. et al. Ras effector pathways modulate scatter factor-stimulated NF-κB signaling and protection against DNA damage. Oncogene 26, 4774–4796 (2007). https://doi.org/10.1038/sj.onc.1210271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210271

Keywords

This article is cited by

Search

Quick links