Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Genomic profiling of malignant melanoma using tiling-resolution arrayCGH

Abstract

Malignant melanoma is an aggressive, heterogeneous disease where new biomarkers for diagnosis and clinical outcome are needed. We searched for chromosomal aberrations that characterize its pathogenesis using 47 different melanoma cell lines and tiling-resolution bacterial artificial chromosome-arrays for comparative genomic hybridization. Major melanoma genes, including BRAF, NRAS, CDKN2A, TP53, CTNNB1, CDK4 and PTEN, were examined for mutations. Distinct copy number alterations were detected, including loss or gain of whole chromosomes but also minute amplifications and homozygous deletions. Most common overlapping regions with losses were mapped to 9p24.3–q13, 10 and 11q14.1-qter, whereas copy number gains were most frequent on chromosomes 1q, 7, 17q and 20q. Amplifications were delineated to oncogenes such as MITF (3p14), CCND1 (11q13), MDM2 (12q15), CCNE1 (19q12) and NOTCH2 (1p12). Frequent findings of homozygous deletions on 9p21 and 10q23 confirmed the importance of CDKN2A and PTEN. Pair-wise comparisons revealed distinct sets of alterations, for example, mutually exclusive mutations in BRAF and NRAS, mutual mutations in BRAF and PTEN, concomitant chromosome 7 gain and 10 loss and concomitant chromosome 15q22.2–q26.3 gain and 20 gain. Moreover, alterations of the various melanoma genes were associated with distinct chromosomal imbalances suggestive of specific genomic programs in melanoma development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3

Similar content being viewed by others

References

  • Autio R, Hautaniemi S, Kauraniemi P, Yli-Harja O, Astola J, Wolf M et al. (2003). CGH-Plotter: MATLAB toolbox for CGH-data analysis. Bioinformatics 19: 1714–1715.

    Article  CAS  PubMed  Google Scholar 

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406: 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Cachia AR, Indsto JO, McLaren KM, Mann GJ, Arends MJ . (2000). CDKN 2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res 6: 3511–3515.

    CAS  PubMed  Google Scholar 

  • Carreira S, Liu B, Goding CR . (2000). The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J Biol Chem 275: 21920–21927.

    Article  CAS  PubMed  Google Scholar 

  • Christensen C, Guldberg P . (2005). Growth factors rescue cutaneous melanoma cells from apoptosis induced by knockdown of mutated (V 600 E) B-RAF. Oncogene 24: 6292–6302.

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  • Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D et al. (2004). BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 23: 5968–5977.

    Article  CAS  PubMed  Google Scholar 

  • Gillanders E, Juo SH, Holland EA, Jones M, Nancarrow D, Freas-Lutz D et al. (2003). Localization of a novel melanoma susceptibility locus to 1p22. Am J Hum Genet 73: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafstrom E, Egyhazi S, Ringborg U, Hansson J, Platz A . (2005). Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res 11: 2991–2997.

    Article  PubMed  Google Scholar 

  • Gronbaek K, de Nully Brown P, Moller MB, Nedergaard T, Ralfkiaer E, Holler P et al. (2000). Concurrent disruption of p16INK4a and the ARF-p53 pathway predicts poor prognosis in aggressive non-Hodgkin's lymphoma. Leukemia 14: 1727–1735.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, Nedergaard T, Nielsen HJ, Olsen AC, Ahrenkiel V, Zeuthen J . (1997a). Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum Mutat 9: 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J . (1997b). Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57: 3660–3663.

    CAS  PubMed  Google Scholar 

  • Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL et al. (2005). The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102: 6092–6997.

    Article  CAS  PubMed  Google Scholar 

  • Hayward NK . (2003). Genetics of melanoma predisposition. Oncogene 22: 3053–3062.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26: 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Jönsson G, Bendahl PO, Sandberg T, Kurbasic A, Staaf J, Sunde L et al. (2005a). Mapping of a novel ocular and cutaneous malignant melanoma susceptibility locus to chromosome 9q21.32. J Natl Cancer Inst 97: 1377–1382.

    Article  PubMed  Google Scholar 

  • Jönsson G, Naylor TL, Vallon-Christersson J, Staaf J, Huang J, Ward MR et al. (2005b). Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65: 7612–7621.

    Article  PubMed  Google Scholar 

  • Kannan K, Sharpless NE, Xu J, O'Hagan RC, Bosenberg M, Chin L . (2003). Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci USA 100: 1221–1225.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66: 4182–4190.

    Article  CAS  PubMed  Google Scholar 

  • Macara IG . (2004). Parsing the polarity code. Nat Rev Mol Cell Biol 5: 220–231.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al. (2003). Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890.

    Article  CAS  PubMed  Google Scholar 

  • Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S et al. (2006). Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Modern Pathol 19: 616.

    Article  CAS  Google Scholar 

  • McLean WH, Irvine AD, Hamill KJ, Whittock NV, Coleman-Campbell CM, Mellerio JE et al. (2003). An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome. Hum Mol Genet 12: 2395–2409.

    Article  CAS  PubMed  Google Scholar 

  • Omholt K, Platz A, Kanter L, Ringborg U, Hansson J . (2003). NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9: 6483–6488.

    CAS  PubMed  Google Scholar 

  • Pavey S, Johansson P, Packer L, Taylor J, Stark M, Pollock PM et al. (2004). Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23: 4060–4067.

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20.

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Walker GJ, Glendening JM, Que Noy T, Bloch NC, Fountain JW et al. (2002). PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res 12: 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Rollins BJ . (2004). Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117: 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C . (2002). BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3: software0003.

    Article  Google Scholar 

  • Sauter ER, Yeo UC, von Stemm A, Zhu W, Litwin S, Tichansky DS et al. (2002). Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62: 3200–3206.

    CAS  PubMed  Google Scholar 

  • Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J et al. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29: 263–264.

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Goto Y, Ichii N, Yamaura M, Murata H, Koga H et al. (2005). Constitutive activation of the mitogen-activated protein kinase signaling pathway in acral melanomas. J Invest Dermatol 125: 318–322.

    Article  CAS  PubMed  Google Scholar 

  • Tanami H, Imoto I, Hirasawa A, Yuki Y, Sonoda I, Inoue J et al. (2004). Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene 23: 8796–8804.

    Article  CAS  PubMed  Google Scholar 

  • Tsao H, Goel V, Wu H, Yang G, Haluska FG . (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker MA, Goldstein AM . (2003). Melanoma etiology: where are we? Oncogene 22: 3042–3052.

    Article  CAS  PubMed  Google Scholar 

  • Walker GJ, Indsto JO, Sood R, Faruque MU, Hu P, Pollock PM et al. (2004). Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-Mb interval. Genes Chromosomes Cancer 41: 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Vance KW, Carreira S, Brosch G, Goding CR . (2005). Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res 65: 2260–2268.

    Article  CAS  PubMed  Google Scholar 

  • Zippelius A, Gati A, Bartnick T, Walton S, Odermatt B, Jaeger E et al. (2006). Melanocyte differentiation antigen RAB38/NY-MEL-1 induces frequent antibody responses exclusively in melanoma patients. Cancer Immunol Immunother Epub ahead of print.

Download references

Acknowledgements

This work was supported by grants from the Swedish Cancer Society, the Swedish Research Council, the Mrs Berta Kamprad Foundation, the Gunnar Nilsson Cancer Foundation, the Franke & Margareta Bergqvist Foundation, the American Cancer Society, the Lund University Hospital Foundations, the King Gustav Vs Jubilee Foundation, the Ingabritt and Arne Lundberg Foundation, the Swedish Foundation for Strategic Research, the Marianne and Marcus Wallenberg Foundation and by the Knut and Alice Wallenberg Foundation via the SWEGENE program. The support from Pieter de Jong and Kazutoyo Osoegawa, BACPAC Resource Center at CHORI, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Å Borg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, G., Dahl, C., Staaf, J. et al. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene 26, 4738–4748 (2007). https://doi.org/10.1038/sj.onc.1210252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210252

Keywords

This article is cited by

Search

Quick links