Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity

Abstract

Leucine-rich repeats and immunoglobulin-like domains-1 (LRIG1) is a transmembrane protein with an ectodomain containing 15 leucine-rich repeats (LRRs) homologous to mammalian decorin and the Drosophila kekkon1 gene. In this study, we demonstrate that a soluble ectodomain of LRIG1, containing only the LRRs, inhibits ligand-independent epidermal growth factor receptor (EGFR) activation and causes growth inhibition of A431, HeLa and MDA-468 carcinoma cells. In contrast, cells that do not express detectable levels of EGFR fail to respond to soluble LRIG1. However, when a functional EGFR gene is introduced in these cells, they become growth-inhibited by soluble LRIG1 protein. Furthermore, we demonstrate the existence of high-affinity (Kd=10 nM) binding sites on the A431 cells that can be competitively displaced (up to 75%) by molar excess of EGF. Even more powerful effects are obtained with a chimeric proteoglycan harboring the N-terminus of decorin, substituted with a single glycosaminoglycan chain, fused to the LRIG1 ectodomain. Both proteins also inhibit ligand-dependent activation of the EGFR and extracellular signal-regulated protein kinase 1/2 signaling in a rapid and dose-dependent manner. These results suggest a novel mechanism of action evoked by a soluble ectodomain of LRIG1 protein that could modulate EGFR signaling and its growth-promoting activity. Attenuation of EGFR activity without physical downregulation of the receptor could represent a novel therapeutic approach toward malignancies in which EGFR plays a primary role in tumor growth and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EGFR:

epidermal growth factor receptor

LRIG1:

leucine-rich repeats and immunoglobulin-like domains-1

LRIG1ecto:

a soluble form of LRIG1 containing only the extracellular leucine-rich domain

Dcn-LRIG1ecto:

a chimeric proteoglycan harboring the N-terminus of decorin fused to LRIG1ecto

CFP:

cyan fluorescent protein

SDS–PAGE:

sodium dodecylsulfate–polyacrylamide gel electrophoresis

References

  • Alvarado D, Rice AH, Duffy JB . (2004a). Bipartite inhibition of Drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of Kekkon1. Genetics 167: 187–202.

    Article  CAS  Google Scholar 

  • Alvarado D, Rice AH, Duffy JB . (2004b). Knockouts of Kekkon1 define sequence elements essential for Drosophila epidermal growth factor receptor inhibition. Genetics 166: 201–211.

    Article  CAS  Google Scholar 

  • Bailly M, Wyckoff J, Bouzahzah B, Hammerman R, Sylvestre V, Cammer M et al. (2000). Epidermal growth factor receptor distribution during chemotactic response. Mol Biol Cell 11: 3873–3883.

    Article  CAS  Google Scholar 

  • Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J . (1994). Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 14: 5192–5201.

    Article  CAS  Google Scholar 

  • Berkers JAM, van Bergen en Henegouwen PMP, Boonstra J . (1991). Three classes of epidermal growth factor receptors on HeLa cells. J Biol Chem 266: 922–927.

    CAS  PubMed  Google Scholar 

  • Carpenter G . (1987). Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem 56: 881–914.

    Article  CAS  Google Scholar 

  • Carpenter G . (2000). The EGF receptor: a nexus for trafficking and signaling. BioEssays 22: 697–707.

    Article  CAS  Google Scholar 

  • Carraway III KL, Sweeney C . (2001). Localization and modulation of ErbB receptor tyrosine kinases. Curr Opin Cell Biol 13: 125–130.

    Article  CAS  Google Scholar 

  • Carter RE, Sorkin A . (1998). Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem 273: 35000–35007.

    Article  CAS  Google Scholar 

  • Cook PW, Piepkorn M, Clegg CH, Plowman GD, DeMay JM, Brown JR et al. (1997). Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J Clin Invest 100: 2286–2294.

    Article  CAS  Google Scholar 

  • Csordás G, Santra M, Reed CC, Eichstetter I, McQuillan DJ, Gross D et al. (2000). Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J Biol Chem 275: 32879–32887.

    Article  Google Scholar 

  • Derheimer FA, MacLaren CM, Weasner BP, Alvarado D, Duffy JB . (2004). Conservation of an inhibitor of the epidermal growth factor receptor, Kekkon1, in dipterans. Genetics 166: 213–224.

    Article  CAS  Google Scholar 

  • Ennis BW, Valverius EM, Bates SE, Lippman ME, Bellot F, Kris R et al. (1989). Anti-epidermal growth factor receptor antibodies inhibit the autocrine-stimulated growth of MDA-468 human breast cancer cells. Mol Endocrinol 3: 1830–1838.

    Article  CAS  Google Scholar 

  • Filmus J, Pollak MN, Cailleau R, Buick RN . (1985). MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Comm 128: 898–905.

    Article  CAS  Google Scholar 

  • Filmus J, Trent JM, Pollak MN, Buick RN . (1987). Epidermal growth factor receptor gene-amplified MDA-468 breast cancer cell line and its nonamplified variants. Mol Cell Biol 7: 251–257.

    Article  CAS  Google Scholar 

  • Fisher LW, Stubbs III JT, Young MF . (1995). Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand 66: 61–65.

    Article  Google Scholar 

  • Ghiglione C, Amundadottir L, Andresdottir M, Bilder D, Diamonti JA, Noselli S et al. (2003). Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development 130: 4483–4493.

    Article  CAS  Google Scholar 

  • Ghiglione C, Carraway III KL, Amundadottir LT, Boswell RE, Perrimon N, Duffy JB . (1999). The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96: 847–856.

    Article  CAS  Google Scholar 

  • Goldoni S, Owens RT, McQuillan DJ, Shriver Z, Sasisekharan R, Birk DE et al. (2004). Biologically active decorin is a monomer in solution. J Biol Chem 279: 6606–6612.

    Article  CAS  Google Scholar 

  • Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B et al. (2005). BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280: 7080–7087.

    Article  CAS  Google Scholar 

  • Grovdal LM, Stang E, Sorkin A, Madshus IH . (2004). Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 300: 388–395.

    Article  CAS  Google Scholar 

  • Guo D, Holmlund C, Henriksson R, Hedman H . (2004). The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics 84: 157–165.

    Article  CAS  Google Scholar 

  • Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J et al. (2004). LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23: 3270–3281.

    Article  CAS  Google Scholar 

  • Hedman H, Nilsson J, Guo D, Henriksson R . (2002). Is LRIG1 a tumour suppressor gene at chromosome 3p14.3? Acta Oncol 41: 352–354.

    Article  CAS  Google Scholar 

  • Holmlund C, Nilsson J, Guo D, Starefeldt A, Golovleva I, Henriksson R et al. (2004). Characterization and tissue-specific expression of human LRIG2. Gene 332: 35–43.

    Article  CAS  Google Scholar 

  • Iozzo RV . (1997). The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 32: 141–174.

    Article  CAS  Google Scholar 

  • Iozzo RV . (1998). Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67: 609–652.

    Article  CAS  Google Scholar 

  • Iozzo RV . (1999). The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274: 18843–18846.

    Article  CAS  Google Scholar 

  • Iozzo RV, Moscatello D, McQuillan DJ, Eichstetter I . (1999). Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem 274: 4489–4492.

    Article  CAS  Google Scholar 

  • Iozzo RV, Murdoch AD . (1996). Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10: 598–614.

    Article  CAS  Google Scholar 

  • Jiang X, Huang F, Marusyk A, Sorkin A . (2003). Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 14: 858–870.

    Article  CAS  Google Scholar 

  • Jiang X, Sorkin A . (2002). Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 13: 1522–1535.

    Article  CAS  Google Scholar 

  • Keene DR, San Antonio JD, Mayne R, McQuillan DJ, Sarris G, Santoro SA et al. (2000). Decorin binds near the C terminus of type I collagen. J Biol Chem 275: 21801–21804.

    Article  CAS  Google Scholar 

  • Kohfeldt E, Maurer P, Vannahme C, Timpl R . (1997). Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett 414: 557–561.

    Article  CAS  Google Scholar 

  • Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway III KL et al. (2004). The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 279: 47050–47056.

    Article  CAS  Google Scholar 

  • Levitzki A, Gazit A . (1995). Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782–1788.

    Article  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4: 1029–1040.

    Article  CAS  Google Scholar 

  • Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM . (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7: 301–311.

    Article  CAS  Google Scholar 

  • Moghal N, Sternberg PW . (1999). Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 11: 190–196.

    Article  CAS  Google Scholar 

  • Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV . (2001). Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J Biol Chem 276: 10263–10271.

    Article  CAS  Google Scholar 

  • Mongiat M, Sweeney S, San Antonio JD, Fu J, Iozzo RV . (2003). Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278: 4238–4249.

    Article  CAS  Google Scholar 

  • Musacchio M, Perrimon N . (1996). The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol 178: 63–76.

    Article  CAS  Google Scholar 

  • Nilsson J, Starefeldt A, Henriksson R, Hedman H . (2003). LRIG1 protein in human cells and tissues. Cell Tissue Res 312: 65–71.

    CAS  PubMed  Google Scholar 

  • Nilsson J, Vallbo C, Guo D, Golovleva I, Hallberg B, Henriksson R et al. (2001). Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Comm 284: 1155–1161.

    Article  CAS  Google Scholar 

  • Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K et al. (1994). Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells. J Biol Chem 269: 31310–31314.

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA . (2005). Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23: 2556–2568.

    Article  CAS  Google Scholar 

  • Reed CC, Gauldie J, Iozzo RV . (2002). Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene 21: 3688–3695.

    Article  CAS  Google Scholar 

  • Reed CC, Waterhouse A, Kirby S, Kay P, Owens RA, McQuillan DJ et al. (2005). Decorin prevents metastatic spreading of breast cancer. Oncogene 24: 1104–1110.

    Article  CAS  Google Scholar 

  • Rubin C, Gur G, Yarden Y . (2005). Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res 15: 66–71.

    Article  CAS  Google Scholar 

  • Santra M, Reed CC, Iozzo RV . (2002). Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping with but distinct from the EGF-binding epitope. J Biol Chem 277: 35671–35681.

    Article  CAS  Google Scholar 

  • Schlessinger J . (2003). Signal transduction. Autoinhibition control. Science 300: 750–752.

    Article  CAS  Google Scholar 

  • Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P et al. (2005). Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102: 2760–2765.

    Article  CAS  Google Scholar 

  • Sordella R, Bell DW, Haber DA, Settleman J . (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305: 1163–1167.

    Article  CAS  Google Scholar 

  • Sorkin A, McClure M, Huang F, Carter R . (2000). Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10: 1395–1398.

    Article  CAS  Google Scholar 

  • Suzuki Y, Miura H, Tanemura A, Kobayashi K, Kondoh G, Sano S et al. (2002). Targeted disruption of LIG-1 gene results in psoriasiform epidermal hyperplasia. FEBS Lett 521: 67–71.

    Article  CAS  Google Scholar 

  • Suzuki Y, Sato N, Tohyama M, Wanaka A, Takagi T . (1996). cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. J Biol Chem 271: 22522–22527.

    Article  CAS  Google Scholar 

  • Thomasson M, Hedman H, Guo D, Ljungberg B, Henriksson R . (2003). LRIGI and epidermal growth factor receptor in renal cell carcinoma: a quantitative RT–PCR and immunohistochemical analysis. Br J Cancer 89: 1285–1289.

    Article  CAS  Google Scholar 

  • Vassar R, Fuchs E . (1991). Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentation. Genes Dev 5: 714.

    Article  CAS  Google Scholar 

  • Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A et al. (2002). A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21: 303–313.

    Article  CAS  Google Scholar 

  • Weber W, Gill GN, Spiess J . (1984). Production of an epidermal growth factor receptor-related protein. Science 224: 294–297.

    Article  CAS  Google Scholar 

  • Yarden Y, Harari I, Schlessinger J . (1985). Purification of an active EGF receptor kinase with monoclonal antireceptor antibodies. J Biol Chem 260: 315–319.

    CAS  PubMed  Google Scholar 

  • Zhu J-X, Goldoni S, Bix G, Owens RA, McQuillan D, Reed CC et al. (2005). Decorin evokes protracted internalization and degradation of the EGF receptor via caveolar endocytosis. J Biol Chem 280: 32468–32479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alexander Sorkin for generously providing the EGFR-CFP construct, Kevin J Williams for the use of the γ-counter, Maurizio Mongiat for supplying the pCEP-Pu vector and Ulrich Rodeck for providing Iressa and valuable suggestions. This work was supported in part by National Institutes of Health Grants RO1 CA39481 and RO1 CA47282, and Department of the Army Grants DAMD17-00-1-0425 (to RVI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R V Iozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldoni, S., Iozzo, R., Kay, P. et al. A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene 26, 368–381 (2007). https://doi.org/10.1038/sj.onc.1209803

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209803

Keywords

This article is cited by

Search

Quick links