Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MAP kinases and the control of nuclear events

Abstract

The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38α, p38β, p38γ, p38δ) and ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein–protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Adachi M, Fukuda M, Nishida E . (1999). Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18: 5347–5358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6: 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Angel P, Karin M . (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129–157.

    CAS  PubMed  Google Scholar 

  • Angel P, Hattori K, Smeal T, Karin M . (1988). The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55: 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Benkhelifa S, Provot S, Nabais E, Eychene A, Calothy G, Felder-Schmittbuhl MP . (2001). Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol 21: 4441–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ . (1998). Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 8: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Hake SB . (2006). The nucleosome: a little variation goes a long way. Biochem Cell Biol 84: 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM, Nebreda AR . (2003). Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372: 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank TA, Becker PB . (1996). The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol 260: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Briata P, Forcales SV, Ponassi M, Corte G, Chen CY, Karin M et al. (2005). p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 20: 891–903.

    Article  CAS  PubMed  Google Scholar 

  • Buday L, Downward J . (1993). Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Buschbeck M, Ullrich A . (2005). The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem 280: 2659–2667.

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S et al. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21: 2743–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway K, Rainey MA, Dalby KN . (2005). Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. Biochim Biophys Acta 1754: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KM, Lumb KJ . (2002). Structurally distinct modes of recognition of the KIX domain of CBP by Jun and CREB. Biochemistry 41: 13956–13964.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KM, Terrell AR, Laybourn PJ, Lumb KJ . (2000). Intrinsic structural disorder of the C-terminal activation domain from the bZIP transcription factor Fos. Biochemistry 39: 2708–2713.

    Article  CAS  PubMed  Google Scholar 

  • Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ . (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90: 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Cavigelli M, Dolfi F, Claret FX, Karin M . (1995). Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14: 5957–5964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ . (2002). Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9: 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B et al. (2001). MAP kinases. Chem Rev 101: 2449–2476.

    Article  CAS  PubMed  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD . (2000). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Chiariello M, Marinissen MJ, Gutkind JS . (2001). Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol 3: 580–586.

    Article  CAS  PubMed  Google Scholar 

  • Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ . (1997). Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278: 1638–1641.

    Article  CAS  PubMed  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH . (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859.

    Article  CAS  PubMed  Google Scholar 

  • Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D . (1999). Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem 274: 23570–23576.

    Article  CAS  PubMed  Google Scholar 

  • Coso OA, Chiariello M, Kalinec G, Kyriakis JM, Woodgett J, Gutkind JS . (1995). Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J Biol Chem 270: 5620–5624.

    Article  CAS  PubMed  Google Scholar 

  • Cowley S, Paterson H, Kemp P, Marshall CJ . (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Cruzalegui FH, Cano E, Treisman R . (1999). ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18: 7948–7957.

    Article  CAS  PubMed  Google Scholar 

  • Dai R, Frejtag W, He B, Zhang Y, Mivechi NF . (2000). c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 275: 18210–18218.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Dean JL, Sully G, Clark AR, Saklatvala J . (2004). The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16: 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  • Dimitri CA, Dowdle W, MacKeigan JP, Blenis J, Murphy LO . (2005). Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr Biol 15: 1319–1324.

    Article  CAS  PubMed  Google Scholar 

  • Ducret C, Maira SM, Lutz Y, Wasylyk B . (2000). The ternary complex factor net contains two distinct elements that mediate different responses to MAP kinase signalling cascades. Oncogene 19: 5063–5072.

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi PP, Hii CS, Ferrante A, Tan J, Der CJ, Omdahl JL et al. (2002). Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. Specific functions for ERK1/ERK2 and ERK5. J Biol Chem 277: 29643–29653.

    Article  CAS  PubMed  Google Scholar 

  • Eisenman RN . (2001). Deconstructing myc. Genes Dev 15: 2023–2030.

    Article  CAS  PubMed  Google Scholar 

  • Elion EA . (2001). The Ste5p scaffold. J Cell Sci 114: 3967–3978.

    Article  CAS  PubMed  Google Scholar 

  • English JM, Pearson G, Baer R, Cobb MH . (1998). Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem 273: 3854–3860.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK . (2006). Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2: 458–466.

    Article  CAS  PubMed  Google Scholar 

  • Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM et al. (2003). MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO R 4: 575–580.

    Article  CAS  Google Scholar 

  • Galanis A, Yang SH, Sharrocks AD . (2001). Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J Biol Chem 276: 965–973.

    Article  CAS  PubMed  Google Scholar 

  • Gerwins P, Blank JL, Johnson GL . (1997). Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem 272: 8288–8295.

    Article  CAS  PubMed  Google Scholar 

  • Gille H, Sharrocks AD, Shaw PE . (1992). Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358: 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ . (1993). Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 122: 1089–1101.

    Article  CAS  PubMed  Google Scholar 

  • Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V et al. (2006). Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8: 764–770.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Campbell D, Derijard B, Davis RJ . (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Gutkind JS . (2000). Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2000: RE1.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B et al. (2004). Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113: 1138–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee HS et al. (2004). Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J 23: 2185–2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera RE, Shaw PE, Nordheim A . (1989). Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340: 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D et al. (2006). Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26: 2399–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho DT, Bardwell AJ, Grewal S, Iverson C, Bardwell L . (2006). Interacting JNK-docking sites in MKK7 promote binding and activation of JNK mitogen-activated protein kinases. J Biol Chem 281: 13169–13179.

    Article  CAS  PubMed  Google Scholar 

  • Hoofnagle AN, Resing KA, Goldsmith EJ, Ahn NG . (2001). Changes in protein conformational mobility upon activation of extracellular regulated protein kinase-2 as detected by hydrogen exchange. Proc Natl Acad Sci USA 98: 956–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoofnagle AN, Stoner JW, Lee T, Eaton SS, Ahn NG . (2004). Phosphorylation-dependent changes in structure and dynamics in ERK2 detected by SDSL and EPR. Biophys J 86: 395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV . (2005). Control of MAPK signalling: from complexity to what really matters. Oncogene 24: 5533–5542.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O et al. (1999). Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18: 813–822.

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH . (1999). Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 274: 7095–7102.

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zhou B, Zhang ZY . (2004). Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase. J Biol Chem 279: 52150–52159.

    Article  CAS  PubMed  Google Scholar 

  • Iavarone C, Catania A, Marinissen MJ, Visconti R, Acunzo M, Tarantino C et al. (2003). The platelet-derived growth factor controls c-myc expression through a JNK- and AP-1-dependent signaling pathway. J Biol Chem 278: 50024–50030.

    Article  CAS  PubMed  Google Scholar 

  • Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P et al. (2005). Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 96: 501–508.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S et al. (1996). Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271: 17920–17926.

    Article  CAS  PubMed  Google Scholar 

  • Kamakura S, Moriguchi T, Nishida E . (1999). Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274: 26563–26571.

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD . (1997). BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 16: 7054–7066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Tapping RI, Huang S, Watson MH, Ulevitch RJ, Lee JD . (1998). Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y et al. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E et al. (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Knebel A, Morrice N, Cohen P . (2001). A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J 20: 4360–4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondoh K, Terasawa K, Morimoto H, Nishida E . (2006). Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms. Mol Cell Biol 26: 1679–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar M, Doody J, Massague J . (1997). Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389: 618–622.

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar M, Doody J, Timokhina I, Massague J . (1999). A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev 13: 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  • Lai WC, Zhou M, Shankavaram U, Peng G, Wahl LM . (2003). Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Immunol 170: 6244–6249.

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Onesime D, Reddy CD, Dhanasekaran N, Reddy EP . (2002). JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc Natl Acad Sci USA 99: 14189–14194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP . (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Lee ER, McCool KW, Murdoch FE, Fritsch MK . (2006a). Dynamic changes in histone H3 phosphoacetylation during early embryonic stem cell differentiation are directly mediated by mitogen- and stress-activated protein kinase 1 via activation of MAPK pathways. J Biol Chem 281: 21162–21172.

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Zhou T, Goldsmith EJ . (2006b). Crystallization of MAP kinases. Methods 40: 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Hoofnagle AN, Kabuyama Y, Stroud J, Min X, Goldsmith EJ et al. (2004). Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 14: 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Hoofnagle AN, Resing KA, Ahn NG . (2005). Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation. J Mol Biol 353: 600–612.

    Article  CAS  PubMed  Google Scholar 

  • Lenormand P, Brondello JM, Brunet A, Pouyssegur J . (1998). Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 142: 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, Liu Y . (2001). Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 21: 8213–8224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, He S, Sun JM, Davie JR . (2004). Gene regulation by Sp1 and Sp3. Biochem Cell Biol 82: 460–471.

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M . (2005). Simultaneous determination of protein structure and dynamics. Nature 433: 128–132.

    Article  CAS  PubMed  Google Scholar 

  • Lisnock J, Griffin P, Calaycay J, Frantz B, Parsons J, O'Keefe SJ et al. (2000). Activation of JNK3 alpha 1 requires both MKK4 and MKK7: kinetic characterization of in vitro phosphorylated JNK3 alpha 1. Biochemistry 39: 3141–3148.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cundiff P, Abel G, Wang Y, Faigle R, Sakagami H et al. (2006a). Extracellular signal-regulated kinase (ERK) 5 is necessary and sufficient to specify cortical neuronal fate. Proc Natl Acad Sci USA 103: 9697–9702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sun JP, Zhou B, Zhang ZY . (2006b). Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci USA 103: 5326–5331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone C, Patel G, Jones N . (1995). ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14: 1785–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ . (1997). Crystal structure of the nucleosome core particle at 2.8. A resolution. Nature 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Marinissen MJ, Chiariello M, Pallante M, Gutkind JS . (1999). A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 19: 4289–4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS . (2004). The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 14: 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Milanini-Mongiat J, Pouyssegur J, Pages G . (2002). Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277: 20631–20639.

    Article  CAS  PubMed  Google Scholar 

  • Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R et al. (1994). c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 14: 6683–6688.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI, Treisman R . (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113: 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD, Gutkind JS . (2005). Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 280: 35081–35084.

    Article  CAS  PubMed  Google Scholar 

  • Monje P, Marinissen MJ, Gutkind JS . (2003). Phosphorylation of the carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by platelet-derived growth factor. Mol Cell Biol 23: 7030–7043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . (2002). Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4: 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Musti AM, Treier M, Bohmann D . (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275: 400–402.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Uhlik MT, Johnson NL, Hahn KM, Johnson GL . (2006). PB1 domain-dependent signaling complex is required for extracellular signal-regulated kinase 5 activation. Mol Cell Biol 26: 2065–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto S, Nishida E . (2006). MAPK signalling: ERK5 versus ERK1/2. EMBO R 7: 782–786.

    Article  CAS  Google Scholar 

  • Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y . (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 274: 32580–32587.

    Article  CAS  PubMed  Google Scholar 

  • Ofir R, Dwarki VJ, Rashid D, Verma IM . (1990). Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. Nature 348: 80–82.

    Article  CAS  PubMed  Google Scholar 

  • Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK . (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J . (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90: 8319–8323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.

    CAS  PubMed  Google Scholar 

  • Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA . (2006). Activated signal transduction kinases frequently occupy target genes. Science 313: 533–536.

    Article  CAS  PubMed  Google Scholar 

  • Pramanik R, Qi X, Borowicz S, Choubey D, Schultz RM, Han J et al. (2003). p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. J Biol Chem 278: 4831–4839.

    Article  CAS  PubMed  Google Scholar 

  • Prowse CN, Hagopian JC, Cobb MH, Ahn NG, Lew J . (2000). Catalytic reaction pathway for the mitogen-activated protein kinase ERK2. Biochemistry 39: 6258–6266.

    Article  CAS  PubMed  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR . (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE . (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91: 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X et al. (2005). Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol 25: 5466–5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roelen BA, Cohen OS, Raychowdhury MK, Chadee DN, Zhang Y, Kyriakis JM et al. (2003). Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-beta-induced nuclear accumulation. Am J Physiol Cell Physiol 285: C823–C830.

    Article  CAS  PubMed  Google Scholar 

  • Rossomando AJ, Payne DM, Weber MJ, Sturgill TW . (1989). Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci USA 86: 6940–6943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccani S, Pantano S, Natoli G . (2002). p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS . (2000). A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 60: 2464–2472.

    CAS  PubMed  Google Scholar 

  • Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM, Gutkind JS . (2002). Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 21: 974–979.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer HJ, Weber MJ . (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger J, Ullrich A . (1992). Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Schmeck B, Beermann W, van Laak V, Zahlten J, Opitz B, Witzenrath M et al. (2005). Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J Immunol 175: 2843–2850.

    Article  CAS  PubMed  Google Scholar 

  • Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G . (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20: 370–375.

    Article  PubMed  Google Scholar 

  • Schweppe RE, Cheung TH, Ahn NG . (2006). Global gene expression analysis of ERK5 and ERK1/2 signaling reveals a role for HIF-1 in ERK5-mediated responses. J Biol Chem 281: 20993–21003.

    Article  CAS  PubMed  Google Scholar 

  • Sears R, Leone G, DeGregori J, Nevins JR . (1999). Ras enhances Myc protein stability. Mol Cell 3: 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Sears RC, Nevins JR . (2002). Signaling networks that link cell proliferation and cell fate. J Biol Chem 277: 11617–11620.

    Article  CAS  PubMed  Google Scholar 

  • Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL . (2004). p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 36: 738–743.

    Article  CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    Article  CAS  PubMed  Google Scholar 

  • Sohn SJ, Li D, Lee LK, Winoto A . (2005). Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase. Mol Cell Biol 25: 8553–8566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA et al. (2003). MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22: 2788–2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl T, Gille H, Shaw PE . (1996). Selective response of ternary complex factor Sap1a to different mitogen-activated protein kinase subgroups. Proc Natl Acad Sci USA 93: 11563–11568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP et al. (2006). Activation of p38{alpha}/{beta} MAPK in myogenesis via binding of the scaffold protein JLP to the cell. J Cell Biol 175: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M . (2000). Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102: 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Tanos T, Marinissen MJ, Leskow FC, Hochbaum D, Martinetto H, Gutkind JS et al. (2005). Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J Biol Chem 280: 18842–18852.

    Article  CAS  PubMed  Google Scholar 

  • Tanoue T, Nishida E . (2003). Molecular recognitions in the MAP kinase cascades. Cell Signal 15: 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Terasawa K, Okazaki K, Nishida E . (2003). Regulation of c-Fos and Fra-1 by the MEK5-ERK5 pathway. Genes Cells 8: 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE et al. (2003). Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Schlessinger J . (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    Article  CAS  PubMed  Google Scholar 

  • van Dam H, Duyndam M, Rottier R, Bosch A, de Vries-Smits L, Herrlich P et al. (1993). Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. Embo J 12: 479–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicent GP, Ballare C, Nacht AS, Clausell J, Subtil-Rodriguez A, Quiles I et al. (2006). Induction of progesterone target genes requires activation of erk and msk kinases and phosphorylation of histone h3. Mol Cell 24: 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Visconti R, Gadina M, Chiariello M, Chen EH, Stancato LF, Gutkind JS et al. (2000). Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activity. Blood 96: 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  • Vorbrueggen G, Lovric J, Moelling K . (1996). Functional analysis of phosphorylation at serine 532 of human c-Myb by MAP kinase. Biol Chem 377: 721–730.

    CAS  PubMed  Google Scholar 

  • Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S . (2002). p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 168: 5342–5351.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Shi X . (2001). Mechanisms of Cr(VI)-induced p53 activation: the role of phosphorylation, mdm2 and ERK. Carcinogenesis 22: 757–762.

    Article  CAS  PubMed  Google Scholar 

  • Wang XZ, Ron D . (1996). Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272: 1347–1349.

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA . (2001). Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4: 981–988.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ . (1995). Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL . (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

    Article  CAS  PubMed  Google Scholar 

  • Wulf G, Finn G, Suizu F, Lu KP . (2005). Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7: 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Luo H, Lee JD, Abe J, Berk BC . (2001). Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem 276: 10870–10878.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Carr J, Ashby PR, Murry-Tait V, Thompson C, Arthur JS . (2003). Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol 3: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ten Eyck LF, Xuong NH, Taylor SS . (2004). Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism. J Mol Biol 336: 473–487.

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Galanis A, Sharrocks AD . (1999). Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19: 4028–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD . (1998). Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 17: 1740–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarubin T, Han J . (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Zhang Y, Jansen C, Goto H, Inagaki M, Dong Z . (2001). MAP kinases mediate UVB-induced phosphorylation of histone H3 at serine 28. J Biol Chem 276: 12932–12937.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Zhang ZY . (2002b). The activity of the extracellular signal-regulated kinase 2 is regulated by differential phosphorylation in the activation loop. J Biol Chem 277: 13889–13899.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Wang ZX, Zhao Y, Brautigan DL, Zhang ZY . (2002a). The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem 277: 31818–31825.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Bao ZQ, Dixon JE . (1995). Components of a new human protein kinase signal transduction pathway. J Biol Chem 270: 12665–12669.

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Sun L, Humphreys J, Goldsmith EJ . (2006). Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14: 1011–1019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Adrian G Turjanski is supported by a fellowship from the PEW Charitable Trust. This research was partially supported by the Intramural Research Program of the NIH, NIDCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Gutkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turjanski, A., Vaqué, J. & Gutkind, J. MAP kinases and the control of nuclear events. Oncogene 26, 3240–3253 (2007). https://doi.org/10.1038/sj.onc.1210415

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210415

Keywords

This article is cited by

Search

Quick links