Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Scaffold proteins of MAP-kinase modules

Abstract

Mitogen-activated protein kinases (MAPKs) regulate critical signaling pathways involved in cell proliferation, differentiation and apoptosis. Recent studies have shown that a novel class of scaffold proteins mediates the structural and functional organization of the three-tier MAPK module. By linking the MAP3K, MAP2K and MAPK into a multienzyme complex, these MAPK-specific scaffold proteins provide an insulated physical conduit through which signals from the respective MAPK can be transmitted to the appropriate spatiotemporal cellular loci. Scaffold proteins play a determinant role in modulating the signaling strength of their cognate MAPK module by regulating the signal amplitude and duration. The scaffold proteins themselves are finely regulated resulting in dynamic intra- and inter-molecular interactions that can modulate the signaling outputs of MAPK modules. This review focuses on defining the diverse mechanisms by which these scaffold proteins interact with their respective MAPK modules and the role of such interactions in the spatiotemporal organization as well as context-specific signaling of the different MAPK modules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barr AJ, Marjoram R, Xu J, Snyderman R . (2002). Phospholipase C-beta 2 interacts with mitogen-activated protein kinase kinase 3. Biochem Biophys Res Commun 293: 647–652.

    CAS  PubMed  Google Scholar 

  • Bell B, Xing H, Yan K, Gautam N, Muslin AJ . (1999). KSR-1 binds to G-protein βγ subunits and inhibits βγ-induced mitogen-activated protein kinase activation. J Biol Chem 274: 7982–7986.

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Court NW . (2004). Counting on mitogen-activated protein kinases--ERKs 3, 4, 5, 6, 7 and 8. Cell Signal 16: 1345–1354.

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA . (2006). The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 28: 923–934.

    CAS  PubMed  Google Scholar 

  • Bonny C, Nicod P, Waeber G . (1998). IB1, a JIP-1-related nuclear protein present in insulin-secreting cells. J Biol Chem 273: 1843–1846.

    CAS  PubMed  Google Scholar 

  • Bonny C, Oberson A, Steinmann M, Schorderet DF, Nicod P, Waeber G . (2000). IB1 reduces cytokine-induced apoptosis of insulin-secreting cells. J Biol Chem 275: 16466–16472.

    CAS  PubMed  Google Scholar 

  • Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG et al. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103: 583–594.

    CAS  PubMed  Google Scholar 

  • Brady ST . (1995). A kinesin medley: biochemical and functional heterogeneity. Trends Cell Biol 5: 159–164.

    CAS  PubMed  Google Scholar 

  • Bridges D, Moorhead GB . (2005). 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 296: re10.

    Google Scholar 

  • Brown MC, Turner CE . (2004). Paxillin: adapting to change. Physiol Rev 84: 1315–1339.

    CAS  PubMed  Google Scholar 

  • Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J . (1999). Nuclear translocation of p42/44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18: 664–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum RJ, Connolly BA, Feig LA . (2002). Interaction of Rac exchange factors TIAM1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 22: 4073–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bumeister R, Rosse C, Anselmo A, Camonis J, White MA . (2004). CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr Biol 14: 439–445.

    CAS  PubMed  Google Scholar 

  • Burack WR, Shaw AS . (2000). Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12: 211–216.

    CAS  PubMed  Google Scholar 

  • Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y . (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32: 787–800.

    CAS  PubMed  Google Scholar 

  • Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM et al. (1999). Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol 19: 229–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    CAS  PubMed  Google Scholar 

  • Channavajhala PL, Wu L, Cuozzo JW, Hall JP, Liu W, Lin LL et al. (2003). Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling. J Biol Chem 278: 47089–47097.

    CAS  PubMed  Google Scholar 

  • Choi KY, Satterberg B, Lyons DM, Elion EA . (1994). Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78: 499–512.

    CAS  PubMed  Google Scholar 

  • Coulombe P, Meloche S . (2006). Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochim Biophys Acta (Epub ahead of print).

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    CAS  PubMed  Google Scholar 

  • Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G et al. (1998). Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 8: 46–55.

    CAS  PubMed  Google Scholar 

  • Dhanasekaran N, Reddy EP . (1998). Signaling by dual specificity kinases. Oncogene 17: 1447–1455.

    CAS  PubMed  Google Scholar 

  • Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR et al. (1997). A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277: 693–696.

    CAS  PubMed  Google Scholar 

  • Elion EA, Qi M, Chen W . (2005). Signal transduction. Signaling specificity in yeast. Science 307: 687–688.

    CAS  PubMed  Google Scholar 

  • Elion EA . (2001). Ste5: A meeting place for MAP kinases and their associates. J Cell Sci 114: 3967–3978.

    CAS  PubMed  Google Scholar 

  • Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL . (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun N-terminal kinases? Curr Opin Genet Dev 7: 67–74.

    CAS  PubMed  Google Scholar 

  • Faux MC, Scott JD . (1996). Molecular glue: kinase anchoring and scaffold proteins. Cell 85: 9–12.

    CAS  PubMed  Google Scholar 

  • Feng Y, Song LY, Kincaid E, Mahanty SK, Elion EA . (1998). Functional binding between Gbeta and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr Biol 8: 267–278.

    CAS  PubMed  Google Scholar 

  • Ferrell Jr JE . (2000). What do scaffold proteins really do? Sci STKE 2000: 52PE1.

    Google Scholar 

  • Ferrer I . (2004). Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice. Neurotox Res 6: 469–475.

    CAS  PubMed  Google Scholar 

  • Flatauer LJ, Zadeh SF, Bardwell L . (2005). Mitogen-activated protein kinases with distinct requirements for Ste5 scaffolding influence signaling specificity in Saccharomyces cerevisiae. Mol Cell Biol 25: 1793–1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239–250.

    CAS  PubMed  Google Scholar 

  • Garrington TP, Johnson GL . (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218.

    CAS  PubMed  Google Scholar 

  • Gartner A, Nasmyth K, Ammerer G . (1992). Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev 6: 1280–1292.

    CAS  PubMed  Google Scholar 

  • Gutkind JS . (1998). Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17: 1331–1342.

    CAS  PubMed  Google Scholar 

  • Ha HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS et al. (2005). The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 277: 184–199.

    CAS  PubMed  Google Scholar 

  • Haefliger JA, Tawadros T, Meylan L, Gurun SL, Roehrich ME, Martin D et al. (2003). The scaffold protein IB1/JIP-1 is a critical mediator of cytokine-induced apoptosis in pancreatic beta cells. J Cell Sci 116: 1463–1469.

    CAS  PubMed  Google Scholar 

  • Herskowitz I . (1995). MAP kinase pathways in yeast: for mating and more. Cell 80: 187–197.

    CAS  PubMed  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). MAP kinases and cell migration. J Cell Sci 117: 4619–4628.

    CAS  PubMed  Google Scholar 

  • Hunter T . (2000). Signaling, 2000 and beyond. Cell 100: 113–127.

    CAS  PubMed  Google Scholar 

  • Ishibe S, Joly D, Zhu X, Cantley LG . (2003). Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12: 1275–1285.

    CAS  PubMed  Google Scholar 

  • Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K et al. (1999). JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 19: 7539–7548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Akechi M, Hirose R, Ichimura M, Takamatsu N, Xu P et al. (2000). Isoforms of JSAP1 scaffold protein generated through alternative splicing. Gene 255: 229–234.

    CAS  PubMed  Google Scholar 

  • Jagadish N, Rana R, Mishra D, Garg M, Chaurasiya D, Hasegawa A et al. (2005). Immunogenicity and contraceptive potential of recombinant human sperm associated antigen (SPAG9). J Reprod Immunol 67: 69–76.

    CAS  PubMed  Google Scholar 

  • Jagadish N, Rana R, Selvi R, Mishra D, Garg M, Yadav S et al. (2005). Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem J 389: 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jho EH, Davis RJ, Malbon CC . (1997). c-Jun N-terminal kinase is regulated by Gα12/Gα13 and obligate for differentiation of P19 embryonal carcinoma cells by retinoic acid. J Biol Chem 272: 24468–24474.

    CAS  PubMed  Google Scholar 

  • Joneson T, Fulton JA, Volle DJ, Chaika OV, Bar-Sagi D, Lewis RE . (1998). Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J Biol Chem 273: 7743–7748.

    CAS  PubMed  Google Scholar 

  • Kang JS, Mulieri PJ, Miller C, Sassoon DA, Krauss RS . (1998). CDO, a robo-related cell surface protein that mediates myogenic differentiation. J Cell Biol 143: 403–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karandikar M, Cobb MH . (1999). Scaffolding and protein interactions in MAP kinase modules. Cell Calcium 26: 219–226.

    CAS  PubMed  Google Scholar 

  • Karandikar M, Xu S, Cobb MH . (2000). MEKK1 binds raf-1 and the ERK2 cascade components. J Biol Chem 275: 40120–40127.

    CAS  PubMed  Google Scholar 

  • Kashef K, Lee CM, Ha JH, Reddy EP, Dhanasekaran DN . (2005). JNK-interacting leucine zipper protein is a novel scaffolding protein in the Gα13 signaling pathway. Biochem 44: 14090–14096.

    CAS  Google Scholar 

  • Kashef K, Xu H, Reddy EP, Dhanasekaran DN . (2006). Endodermal differentiation of murine embryonic carcinoma cells by retinoic acid requires JLP, a JNK-scaffolding protein. J Cell Biochem 98: 715–722.

    CAS  PubMed  Google Scholar 

  • Kelkar N, Delmotte MH, Weston CR, Barrett T, Sheppard BJ, Flavell RA et al. (2003). Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc Natl Acad Sci USA 100: 9843–9848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar N, Gupta S, Dickens M, Davis RJ . (2000). Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 20: 1030–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar N, Standen CL, Davis RJ . (2005). Role of JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 25: 2733–2743.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E et al. (1998). Phosphorylation of the MAP kinsae ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605–615.

    CAS  PubMed  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    CAS  PubMed  Google Scholar 

  • Kornfeld K, Hom DB, Horvitz HR . (1995). The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83: 903–913.

    CAS  PubMed  Google Scholar 

  • Kranz JE, Satterberg B, Elion EA . (1994). The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Genes Dev 8: 313–327.

    CAS  PubMed  Google Scholar 

  • Krauss RS, Cole F, Gaio U, Takaesu G, Zhang W, Kang JS . (2005). Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J Cell Sci 118: 2355–2362.

    CAS  PubMed  Google Scholar 

  • Kuboki Y, Ito M, Takamatsu N, Yamamoto KI, Shiba T, Yoshioka K . (2000). A scaffold protein in the c-Jun NH2-terminal kinase signaling pathways suppresses the extracellular signal-regulated kinase signaling pathways. J Biol Chem 275: 39815–39818.

    CAS  PubMed  Google Scholar 

  • Kukekov NV, Xu Z, Greene LA . (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 281: 15517–15524.

    CAS  PubMed  Google Scholar 

  • Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E et al. (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278: 34568–34581.

    CAS  PubMed  Google Scholar 

  • Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL . (1993). A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319.

    CAS  PubMed  Google Scholar 

  • Lee CL, Onesime D, Reddy CD, Dhanasekaran N, Reddy EP . (2002). JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc Natl Acad Sci USA 99: 14189–14194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefkowitz RJ, Shenoy SK . (2005). Transduction of receptor signals by β-arrestins. Science 308: 512–517.

    CAS  PubMed  Google Scholar 

  • Levchenko A, Bruck J, Sternberg PW . (2000). Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci USA 97: 5818–5823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Van de Casteele M, Dong J, Heimberg H, Haefliger JA, Waeber G et al. (2003). Variations in IB1/JIP1 expression regulate susceptibility of β-cells to cytokine-induced apoptosis irrespective of C-Jun NH2-terminal kinase signaling. Diabetes 52: 2497–2502.

    CAS  PubMed  Google Scholar 

  • Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T . (2002). The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9: 945–956.

    CAS  PubMed  Google Scholar 

  • Marcus S, Polverino A, Barr M, Wigler M . (1994). Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc Natl Acad Sci USA 91: 7762–7766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS . (2004). The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 14: 29–41.

    CAS  PubMed  Google Scholar 

  • Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA . (2004). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427: 256–260.

    CAS  PubMed  Google Scholar 

  • Matheny SA, White MA . (2005). Ras-Sensitive IMP Modulation of the Raf/MEK/ERK Cascade Through KSR1. Methods Enzymol 407: 237–247.

    Google Scholar 

  • Matsuda S, Yasukawa T, Homma Y, Ito Y, Niikura T, Hiraki T et al. (2001). c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J Neurosci 21: 6597–6607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuguchi T, Masuda A, Sugimoto K, Nagai Y, Yoshikai Y . (2003). JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J 22: 4455–4464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M et al. (2002). Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem 277: 40703–40709.

    CAS  PubMed  Google Scholar 

  • Meyer D, Liu A, Margolis B . (1999). Interaction of c-Jun N-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J Biol Chem 274: 35114–35118.

    Google Scholar 

  • Michaud NR, Therrien M, Cacace A, Edsall LC, Spiegel S, Rubin GM et al. (1997). KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci USA 94: 12792–12796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minden A, Karin M . (1997). Regulation and function of the JNK subgroup of MAP kinases. Biochem Biophys Acta 1333: 85–104.

    Google Scholar 

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ et al. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723.

    CAS  PubMed  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    CAS  PubMed  Google Scholar 

  • Morrison DK . (2001). KSR: a MAPK scaffold of the Ras pathway? J Cell Sci 114: 1609–1612.

    CAS  PubMed  Google Scholar 

  • Muller J, Cacace AM, Lyons WE, McGill CB, Morrison DK . (2000). Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol 20: 5529–5539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK . (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8: 983–993.

    CAS  PubMed  Google Scholar 

  • Nakamura K, Johnson GL . (2003). PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 278: 36989–36992.

    CAS  PubMed  Google Scholar 

  • Nakamura K, Uhlik MT, Johnson NL, Hahn KM, Johnson GL . (2006). PB1 domain-dependent signaling complex is required for extracellular signal-regulated kinase 5 activation. Mol Cell Biol 26: 2065–2079.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negri S, Oberson A, Steinmann M, Sauser C, Nicod P, Waeber G et al. (2000). cDNA cloning and mapping of a novel islet-brain/JNK-interacting protein. Genomics 64: 324–330.

    CAS  PubMed  Google Scholar 

  • Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M et al. (2002). Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22: 3035–3045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen Q, Lee CM, Reddy EP . (2005). JLP associates with kinesin light chain 1 through a novel leucine zipper-like domain. J Biol Chem 280: 30185–30191.

    CAS  PubMed  Google Scholar 

  • Nihalani D, Meyer D, Pajni S, Holzman LB . (2001). Mixed lineage kinase-dependent JNK activation is governed by interactions of scaffold protein JIP with MAPK module components. EMBO J 20: 3447–3458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikulina MA, Sandhu N, Shamim Z, Andersen NA, Oberson A, Dupraz P et al. (2003). The JNK binding domain of islet-brain 1 inhibits IL-1 induced JNK activity and apoptosis but not the transcription of key proapoptotic or protective genes in insulin-secreting cell lines. Cytokine 24: 13–24.

    CAS  PubMed  Google Scholar 

  • Ohmachi M, Rocheleau CE, Church D, Lambie E, Schedl T, Sundaram MV . (2002). C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr Biol 12: 427–433.

    CAS  PubMed  Google Scholar 

  • Ory S, Morrison DK . (2004). Signal transduction: implications for Ras-dependent ERK signaling. Curr Biol 14: R277–R278.

    CAS  PubMed  Google Scholar 

  • Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK . (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13: 1356–1364.

    CAS  PubMed  Google Scholar 

  • Park SH, Zarrinpar A, Lim WA . (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299: 1061–1064.

    CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD . (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–2080.

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.

    CAS  PubMed  Google Scholar 

  • Ponting CP, Ito T, Moscat J, Diaz-Meco MT, Inagaki F, Sumimoto H . (2002). OPR, PC and AID: all in the PB1 family. Trends Biochem Sci 27: 10.

    CAS  PubMed  Google Scholar 

  • Posas F, Saito H . (1997). Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17: 1385–1394.

    Google Scholar 

  • Posas F, Takekawa M, Saito H . (1998). Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1: 175–182.

    CAS  PubMed  Google Scholar 

  • Printen JA, Sprague GF . (1994). Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138: 609–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptashne M, Gann A . (2003). Signal transduction. Imposing specificity on kinases. Science 299: 1025–1027.

    CAS  PubMed  Google Scholar 

  • Pullikuth A, McKinnon E, Schaeffer HJ, Catling AD . (2005). The MEK1 scaffolding protein MP1 regulates cell spreading by integrating PAK1 and Rho signals. Mol Cell Biol 25: 5119–5133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Elion EA . (2005). MAP kinase pathways. J Cell Sci 118: 3569–3572.

    CAS  PubMed  Google Scholar 

  • Raabe T, Rapp UR . (2003). Ras signaling: PP2A puts Ksr and Raf in the right place. Curr Biol 13: R635–R637.

    CAS  PubMed  Google Scholar 

  • Raman M, Cobb MH . (2003). MAP kinase modules: many roads home. Curr Biol 13: R886–R888.

    CAS  PubMed  Google Scholar 

  • Renganathan H, Vaidyanathan H, Knapinska A, Ramos JW . (2005). Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD. Biochem J 390: 729–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X et al. (2005). Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38α MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol 25: 5466–5479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roemer T, Vallier L, Sheu YJ, Snyder M . (1998). The Spa2-related protein, Sph1p, is important for polarized growth in yeast. J Cell Sci 111: 479–494.

    CAS  PubMed  Google Scholar 

  • Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M . (2002). KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16: 427–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy F, Therrien M . (2002). MAP kinase module: the Ksr connection. Curr Biol 12: R325–R327.

    CAS  PubMed  Google Scholar 

  • Roy M, Li Z, Sacks DB . (2004). IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 279: 17329–17337.

    CAS  PubMed  Google Scholar 

  • Roy M, Li Z, Sacks DB . (2005). IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol 25: 7940–7952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell M, Lange-Carter CA, Johnson GL . (1995). Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 270: 11757–11760.

    CAS  PubMed  Google Scholar 

  • Sabio G, Arthur JS, Kuma Y, Peggie M, Carr J, Murray-Tait V et al. (2005). p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J 24: 1134–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ . (1998). MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281: 1668–1671.

    CAS  PubMed  Google Scholar 

  • Scheinfeld MH, Roncarati R, Vito P, Lopez PA, Abdallah M, D'Adamio L . (2002). Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). J Biol Chem 277: 3767–3775.

    CAS  PubMed  Google Scholar 

  • Schoorlemmer J, Goldfarb M . (2002). Fibroblast growth factor homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. J Biol Chem 277: 49111–49119.

    CAS  PubMed  Google Scholar 

  • Sette C, Inouye CJ, Stroschein SL, Iaquinta PJ, Thorner J . (2000). Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol Biol Cell 11: 4033–4049.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar S, Mohapatra B, Verma S, Selvi R, Jagadish N, Suri A . (2004). Isolation and characterization of a haploid germ cell specific sperm associated antigen 9 (SPAG9) from the baboon. Mol Reprod Dev 69: 186–193.

    CAS  PubMed  Google Scholar 

  • Sieburth DS, Sundaram M, Howard RM, Han M . (1999). A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev 13: 2562–2569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL . (1999). Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19: 5523–5534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su B, Karin M . (1996). Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 8: 402–411.

    CAS  PubMed  Google Scholar 

  • Sugimoto T, Stewart S, Han M, Guan KL . (1998). The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. EMBO J 17: 1717–1727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram M, Han M . (1995). The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83: 889–901.

    CAS  PubMed  Google Scholar 

  • Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP et al. (2006). Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol 175: 383–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takekawa M, Tatebayashi K, Saito H . (2005). Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell 18: 295–306.

    CAS  PubMed  Google Scholar 

  • Takino T, Nakada M, Miyamori H, Watanabe Y, Sato T, Gantulga D et al. (2005). JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J Biol Chem 280: 37772–37781.

    CAS  PubMed  Google Scholar 

  • Takino T, Yoshioka K, Miyamori H, Yamada KM, Sato H . (2002). A scaffold protein in the c-Jun N-terminal kinase signaling pathway is associated with focal adhesion kinase and tyrosine-phosphorylated. Oncogene 21: 6488–6497.

    CAS  PubMed  Google Scholar 

  • Tapon N, Nagata K, Lamarche N, Hall A . (1998). A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signaling pathways. EMBO J 17: 1395–1404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taru H, Kirino Y, Suzuki T . (2002). Differential roles of JIP scaffold proteins in the modulation of amyloid precursor protein metabolism. J Biol Chem 277: 27567–27574.

    CAS  PubMed  Google Scholar 

  • Tatebayashi K, Takekawa M, Saito H . (2003). A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22: 3624–3634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teis D, Wunderlich W, Huber LA . (2002). Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3: 803–814.

    CAS  PubMed  Google Scholar 

  • Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM . (1995). KSR, a novel protein kinase required for RAS signal transduction. Cell 83: 879–888.

    CAS  PubMed  Google Scholar 

  • Therrien M, Michaud NR, Rubin GM, Morrison DK . (1996). KSR modulates signal propagation within the MAPK cascade. Genes Dev 10: 2684–2695.

    CAS  PubMed  Google Scholar 

  • Uhlik MT, Abell AN, Cuevas BD, Nakamura K, Johnson GL . (2004). Wiring diagrams of MAPK regulation by MEKK1, 2, and 3. Biochem Cell Biol 82: 658–663.

    CAS  PubMed  Google Scholar 

  • Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE et al. (2003). Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5: 1104–1110.

    CAS  PubMed  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP . (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule- based motility. Cell 42: 39–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J . (2000). 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345: 297–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA et al. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152: 959–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volmat V, Pouyssegur J . (2001). Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol Cell 93: 71–79.

    CAS  PubMed  Google Scholar 

  • Vomastek T, Schaeffer HJ, Tarcsafalvi A, Smolkin ME, Bissonette EA, Weber MJ . (2004). Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc Natl Acad Sci USA 101: 6981–6986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmarsh AJ, Davis RJ . (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481–485.

    CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Davis RJ . (1999). Signal transduction by MAP kinases: regulation by phosphorylation-dependent switches. Sci STKE 1999: PE1.

    CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP et al. (2001). Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 15: 2421–2432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmarsh AJ . (2006). The JIP family of MAPK scaffold proteins. Biochem Soc Trans 34: 828–832.

    CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ . (1998). A mammalian scaffold complex that selectively mediated MAP kinase activation. Science 281: 1671–1674.

    CAS  PubMed  Google Scholar 

  • Willoughby EA, Collins MK . (2005). Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein β-arrestin 2. J Biol Chem 280: 25651–25658.

    CAS  PubMed  Google Scholar 

  • Willoughby EA, Perkins GR, Collins MK, Whitmarsh AJ . (2003). The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem 278: 10731–10736.

    CAS  PubMed  Google Scholar 

  • Witowsky JA, Johnson GL . (2003). Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J Biol Chem 278: 1403–1406.

    CAS  PubMed  Google Scholar 

  • Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG et al. (2001). A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152: 765–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Wang J, Xu S, Johnson GL, Hunter T, Lu Z . (2006). MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stress. Mol Cell Biol 27: 510–517.

    PubMed  PubMed Central  Google Scholar 

  • Xing H, Kornfeld K, Muslin AJ . (1997). The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol 7: 294–300.

    CAS  PubMed  Google Scholar 

  • Xu S, Cobb MH . (1997). MEKK1 binds directly to the c-Jun N-terminal kinases/stress-activated protein kinases. J Biol Chem 272: 32056–32060.

    CAS  PubMed  Google Scholar 

  • Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb MH . (1995). MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 92: 6808–6812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Robbins DJ, Christerson LB, English JM, Vanderbilt CA, Cobb MH . (1996). Cloning of rat MEK kinase 1 cDNA reveals an endogenous membrane-associated 195-kDa protein with a large regulatory domain. Proc Natl Acad Sci USA 93: 5291–5295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Kukekov NV, Greene LA . (2003). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 22: 252–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ . (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 19: 7245–7254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarubin T, Han J . (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11–18.

    CAS  PubMed  Google Scholar 

  • Zhou Z, Gartner A, Cade R, Ammerer G, Errede B . (1993). Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol Cell Biol 13: 2069–2080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziogas A, Moelling K, Radziwill G . (2005). CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280: 24205–24211.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies presented in authors' laboratories were supported by the National Institutes of Health Grants GM49897 (to DND) and AG22022 (to EPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasekaran, D., Kashef, K., Lee, C. et al. Scaffold proteins of MAP-kinase modules. Oncogene 26, 3185–3202 (2007). https://doi.org/10.1038/sj.onc.1210411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210411

Keywords

This article is cited by

Search

Quick links