Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells

Abstract

Following prolonged mitotic spindle disruption by microtubule poisons, mammalian cells delay their entry into anaphase, then progressively slip out of mitosis and become tetraploid. Normal cells then stop cycling before S-phase onset, but the mechanisms underlying this arrest are still unclear. Here we show that a double block prevents endo-reduplication. First, cells that exit mitosis without a functional microtubule network are driven toward G0. Reconstitution of the network unmasks a second block that relies on DNA double-strand breaks occurring early in the G1 phase that follows the mitotic block. We propose that a stress signal elicited upon mitotic impairment triggers breakage, which couples the leaky spindle checkpoint to the stringent DNA damage response. Consistent with this finding, cells defective for the damage response continue cycling and acquire, within a single cell cycle, both chromosome rearrangements and abnormal chromosome numbers that remarkably mimic the complex genetic hallmark of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aardema MJ, Albertini S, Arni P, Henderson LM, Kirsch-Volders M, Mackay JM et al. (1998). Mutat Res 410: 3–79.

  • Anglana M, Debatisse M . (2001). J Biol Chem 276: 36639–36646.

  • Bharadwaj R, Yu H . (2004). Oncogene 23: 2016–2027.

  • Casenghi M, Mangiacasale R, Tuynder M, Caillet-Fauquet P, Elhajouji A, Lavia P et al. (1999). Exp Cell Res 250: 339–350.

  • Ciciarello M, Mangiacasale R, Casenghi M, Zaira Limongi M, D'Angelo M, Soddu S et al. (2001). J Biol Chem 276: 19205–19213.

  • Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M . (1997). Cell 89: 215–225.

  • Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ . (1994). Proc Natl Acad Sci USA 91: 5124–5128.

  • Dutrillaux B . (1995). Adv Cancer Res 67: 59–82.

  • Felsher DW, Bishop JM . (1999). Proc Natl Acad Sci USA 96: 3940–3944.

  • Halappanavar SS, Shah GM . (2004). Cell Cycle 3: 335–342.

  • Hartwell LH, Kastan MB . (1994). Science 266: 1821–1828.

  • Jallepalli PV, Lengauer C . (2001). Nat Rev Cancer 1: 109–117.

  • Jimenez GS, Khan SH, Stommel JM, Wahl GM . (1999). Oncogene 18: 7656–7665.

  • Khan SH, Wahl GM . (1998). Cancer Res 58: 396–401.

  • Khan SH, Moritsugu J, Wahl GM . (2000). Proc Natl Acad Sci USA 97: 3266–3271.

  • Kops GJ, Weaver BA, Cleveland DW . (2005). Nat Rev Cancer 5: 773–785.

  • Mantel CR, Gelfano VM, Kim YJ, McDaniel A, Lee Y, Boswell HS et al. (2002). Cell Cycle 1: 327–336.

  • Margolis RL, Lohez OD, Andreassen PR . (2003). J Cell Biochem 88: 673–683.

  • Martin SS, Vuori K . (2004). Biochim Biophys Acta 1692: 145–157.

  • Masuda A, Takahashi T . (2002). Oncogene 21: 6884–6897.

  • Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K et al. (2006). Proc Natl Acad Sci USA 103: 1446–1451.

  • Rieder CL, Maiato H . (2004). Dev Cell 7: 637–651.

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). J Biol Chem 273: 5858–5868.

  • Stewart ZA, Leach SD, Pietenpol JA . (1999). Mol Cell Biol 19: 205–215.

  • Stubblefield E . (1964). Symp Intern Soc Cell Biol 3: 223–248.

  • Toledo F, LeRoscouet D, Buttin G, Debatisse M . (1992). EMBO J 11: 2665–2673.

  • Tritarelli A, Oricchio E, Ciciarello M, Mangiacasale R, Palena A, Lavia P et al. (2004). Mol Biol Cell 4: 3751–3757.

  • Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio Y, Saya H . (2001). Oncogene 20: 420–429.

  • Uetake Y, Sluder G . (2004). J Cell Biol 165: 609–615.

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). Mol Cell 9: 1031–1044.

  • Wong C, Stearns T . (2005). BMC Cell Biol 6: 6.

Download references

Acknowledgements

This work was supported by the Association pour la Recherche sur le Cancer (ARC) and the Fondation pour la Recherche Médicale. L R was a Fellow of the French government (M E N R T) then of the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Debatisse.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quignon, F., Rozier, L., Lachages, AM. et al. Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells. Oncogene 26, 165–172 (2007). https://doi.org/10.1038/sj.onc.1209787

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209787

Keywords

This article is cited by

Search

Quick links