Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer

Abstract

Several somatic mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have been identified that predict clinical response of non-small-cell lung carcinoma (NSCLC) patients to gefitinib. To test the hypothesis that these mutations cause constitutive EGF receptor signaling, and to investigate its mechanistic basis, we expressed representative examples in a null background and analysed their biochemical properties. Each mutation caused significant EGF-independent tyrosine phosphorylation of EGFR, and allowed the receptor to promote Ba/F3 cell mitogenesis in the absence of EGF, arguing that these are oncogenic mutations. Active mutated receptors are present at the cell surface and are fully competent to bind EGF. Recent structural studies show that the inactive EGFR tyrosine kinase domain is autoinhibited by intramolecular interactions between its activation loop and αC helix. We find that mutations predicted to disrupt this autoinhibitory interaction (including several that have not been described in NSCLC) elevate EGF-independent tyrosine kinase activity, thus providing new insight into how somatic mutations activate EGFR and other ErbB family members.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H et al. (2005). Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 65: 226–235.

    CAS  PubMed  Google Scholar 

  • Arteaga CL . (2002). Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7 (Suppl 4): 31–39.

    Article  CAS  Google Scholar 

  • Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ . (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274: 8335–8343.

    Article  CAS  Google Scholar 

  • Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ et al. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12: 541–552.

    Article  CAS  Google Scholar 

  • Chen YR, Fu YN, Lin CH, Yang ST, Hu SF, Chen YT et al. (2006). Distinctive activation patterns in constitutively active and gefitinib-sensitive EGFR mutants. Oncogene 25: 1205–1215.

    Article  CAS  Google Scholar 

  • Collins MK, Downward J, Miyajima A, Maruyama K, Arai K, Mulligan RC . (1988). Transfer of functional EGF receptors to an IL3-dependent cell line. J Cell Physiol 137: 293–298.

    Article  CAS  Google Scholar 

  • de Larco JE, Todaro GJ . (1978). Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol 94: 335–342.

    Article  CAS  Google Scholar 

  • Dent R, Clemons M . (2006). Trastuzumab after primary treatment for early stage HER2-positive breast cancer reduces recurrence. Cancer Treat Rev 32: 144–148.

    Article  CAS  Google Scholar 

  • Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR et al. (1987a). Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51: 1063–1070.

    Article  CAS  Google Scholar 

  • Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA . (1987b). ErbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237: 178–182.

    Article  CAS  Google Scholar 

  • Ekstrand AJ, Liu L, He J, Hamid ML, Longo N, Collins VP et al. (1995). Altered subcellular location of an activated and tumour-associated epidermal growth factor receptor. Oncogene 10: 1455–1460.

    CAS  PubMed  Google Scholar 

  • Fabian MA, Biggs 3rd WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23: 329–336.

    Article  CAS  Google Scholar 

  • Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA . (2003). EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11: 507–517.

    Article  CAS  Google Scholar 

  • Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 21: 2237–2246.

    Article  CAS  Google Scholar 

  • Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2: e313.

    Article  Google Scholar 

  • Holbro T, Civenni G, Hynes NE . (2003). The ErbB receptors and their role in cancer progression. Exp Cell Res 284: 99–110.

    Article  CAS  Google Scholar 

  • Hudziak RM, Schlessinger J, Ullrich A . (1987). Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 84: 7159–7163.

    Article  CAS  Google Scholar 

  • Hudziak RM, Ullrich A . (1991). Cell transformation potential of a HER2 transmembrane domain deletion mutant retained in the endoplasmic reticulum. J Biol Chem 266: 24109–24115.

    CAS  PubMed  Google Scholar 

  • Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD . (2005). Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 65: 8968–8974.

    Article  CAS  Google Scholar 

  • Kris MG, Natale RB, Herbst RS, Lynch Jr TJ, Prager D, Belani CP et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290: 2149–2158.

    Article  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.

    Article  CAS  Google Scholar 

  • Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97: 1185–1194.

    Article  CAS  Google Scholar 

  • Ozcan F, Klein P, Lemmon MA, Lax I, Schlessinger J . (2006). On the nature of low- and high-affinity EGF receptors on living cells. Proc Natl Acad Sci USA 103: 5735–5740.

    Article  CAS  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    Article  CAS  Google Scholar 

  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. (2004). EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101: 13306–13311.

    Article  CAS  Google Scholar 

  • Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD et al. (1996). The epidermal growth factor receptor couples transforming growth factor-alpha, heparin-binding epidermal growth factor-like factor, and amphiregulin to Neu, ErbB-3, and ErbB-4. J Biol Chem 271: 20047–20052.

    Article  CAS  Google Scholar 

  • Riese 2nd DJ, van Raaij TM, Plowman GD, Andrews GC, Stern DF . (1995). The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 15: 5770–5776.

    Article  CAS  Google Scholar 

  • Sakai K, Arao T, Shimoyama T, Murofushi K, Sekijima M, Kaji N et al. (2006). Dimerization and the signal transduction pathway of a small in-frame deletion in the epidermal growth factor receptor. FASEB J 20: 311–313.

    Article  CAS  Google Scholar 

  • Schechter Y, Hernaez L, Schlessinger J, Cuatrecasas P . (1979). Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature 278: 835–838.

    Article  CAS  Google Scholar 

  • Schreiber AB, Libermann TA, Lax I, Yarden Y, Schlessinger J . (1983). Biological role of epidermal growth factor-receptor clustering. Investigation with monoclonal anti-receptor antibodies. J Biol Chem 258: 846–853.

    CAS  PubMed  Google Scholar 

  • Shimamura T, Lowell AM, Engelman JA, Shapiro GI . (2005). Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65: 6401–6408.

    Article  CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  Google Scholar 

  • Sordella R, Bell DW, Haber DA, Settleman J . (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305: 1163–1167.

    Article  CAS  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C . (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277: 46265–46272.

    Article  CAS  Google Scholar 

  • Tice DA, Biscardi JS, Nickles AL, Parsons SJ . (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 96: 1415–1420.

    Article  CAS  Google Scholar 

  • Ullrich A, Schlessinger J . (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    Article  CAS  Google Scholar 

  • Walker F, Orchard SG, Jorissen RN, Hall NE, Zhang HH, Hoyne PA et al. (2004). CR1/CR2 interactions modulate the functions of the cell surface epidermal growth factor receptor. J Biol Chem 279: 22387–22398.

    Article  CAS  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH et al. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.

    Article  CAS  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J . (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125: 1137–1149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kate Ferguson and members of the Lemmon laboratory for valuable discussions and comments on the paper. This work was supported by NIH grant R01-CA096768 to MAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Lemmon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Mendrola, J. & Lemmon, M. EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer. Oncogene 26, 1567–1576 (2007). https://doi.org/10.1038/sj.onc.1209957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209957

Keywords

This article is cited by

Search

Quick links