Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies

Abstract

Apoptin, a protein of the chicken anemia virus (CAV), represents a novel potential anticancer therapeutic, because it induces apoptotic death specifically in tumor but not normal cells. The cellular localization appears to be crucial for apoptin's selective toxicity. In normal cells apoptin remains in the cytoplasm, whereas in transformed cells it migrates into the nucleus and kills the cell. However, the manner by which apoptin is able to distinguish between tumor and normal cells is unknown. Here, we report for the first time that apoptin interacts directly with the promyelocytic leukemia protein (PML) in tumor cells and accumulates in PML nuclear bodies (NBs), which are involved in apoptosis induction and viral replication. We also demonstrate that apoptin is sumoylated and that a sumoylation-deficient apoptin mutant is no longer recruited to PML-NBs, but localizes in the nuclear matrix. This mutant fails to bind PML, but can still induce apoptosis as efficiently as wild-type apoptin. Moreover, apoptin kills also PML−/− cells and promyelocytic leukemia cells with defective PML expression. Our results therefore suggest that apoptin kills tumor cells independently of PML and sumoylation, however, the interaction of apoptin with PML and small ubiquitin-like modifier (SUMO) proteins might be relevant for CAV replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adair BM . (2000). Immunopathogenesis of chicken anemia virus infection. Dev Comp Immunol 24: 247–255.

    Article  CAS  Google Scholar 

  • Bernardi R, Pandolfi PP . (2003). Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22: 9048–9057.

    Article  CAS  Google Scholar 

  • Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M . (2005). Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 25: 2213–2222.

    Article  Google Scholar 

  • Chen A, Wang PY, Yang YC, Huang YH, Yeh JJ, Chou YH et al. (2006). SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. J Cell Biochem 98: 895–911.

    Article  CAS  Google Scholar 

  • Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, Klein B, Zhuang S, Falkenburg JH et al. (1997). Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci USA 94: 5843–5847.

    Article  CAS  Google Scholar 

  • Danen-Van Oorschot AA, Zhang YH, Leliveld SR, Rohn JL, Seelen MC, Bolk MW et al. (2003). Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem 278: 27729–27736.

    Article  CAS  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  Google Scholar 

  • Engels I, Totzke G, Fischer U, Schulze-Osthoff K, Janicke RU . (2005). Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Mol Cell Biol 25: 2808–2818.

    Article  CAS  Google Scholar 

  • Everett RD . (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20: 7266–7273.

    Article  CAS  Google Scholar 

  • Fischer U, Schulze-Osthoff K . (2005). New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57: 187–215.

    Article  CAS  Google Scholar 

  • Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM . (2005). Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 10: 1231–1243.

    Article  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185–6195.

    Article  CAS  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW et al. (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043–1054.

    Article  CAS  Google Scholar 

  • Guelen L, Paterson H, Gaken J, Meyers M, Farzaneh F, Tavassoli M . (2004). TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 23: 1153–1165.

    Article  CAS  Google Scholar 

  • Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ . (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96: 269–279.

    Article  CAS  Google Scholar 

  • Hay RT . (2005). SUMO: a history of modification. Mol Cell 18: 1–12.

    Article  CAS  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    Article  CAS  Google Scholar 

  • Hofmann TG, Will H . (2003). Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 10: 1290–1299.

    Article  CAS  Google Scholar 

  • Ishov AM, Maul GG . (1996). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134: 815–826.

    Article  CAS  Google Scholar 

  • Johnson ES . (2004). Protein modification by SUMO. Annu Rev Biochem 73: 355–382.

    Article  CAS  Google Scholar 

  • Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET . (1998). Identification of three major sentrinization sites in PML. J Biol Chem 273: 26675–26682.

    Article  CAS  Google Scholar 

  • Koken MH, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thepot J et al. (1995). The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10: 1315–1324.

    CAS  PubMed  Google Scholar 

  • Leliveld SR, Noteborn MH, Abrahams JP . (2003a). Prevalent conformations and subunit exchange in the biologically active apoptin protein multimer. Eur J Biochem 270: 3619–3627.

    Article  CAS  Google Scholar 

  • Leliveld SR, Zhang YH, Rohn JL, Noteborn MH, Abrahams JP . (2003b). Apoptin induces tumor-specific apoptosis as a globular multimer. J Biol Chem 278: 9042–9051.

    Article  CAS  Google Scholar 

  • Muller S, Hoege C, Pyrowolakis G, Jentsch S . (2001). SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2: 202–210.

    Article  CAS  Google Scholar 

  • Noteborn MH, Todd D, Verschueren CA, de Gauw HW, Curran WL, Veldkamp S et al. (1994). A single chicken anemia virus protein induces apoptosis. J Virol 68: 346–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oro C, Jans DA . (2004). The tumour specific pro-apoptotic factor apoptin (VP3) from chicken anaemia virus. Curr Drug Targets 5: 179–190.

    Article  CAS  Google Scholar 

  • Peters MA, Crabb BS, Washington EA, Browning GF . (2006). Site-directed mutagenesis of the VP2 gene of chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression. J Gen Virol. 87: 823–831.

    Article  CAS  Google Scholar 

  • Piazza F, Gurrieri C, Pandolfi PP . (2001). The theory of APL. Oncogene 20: 7216–7222.

    Article  CAS  Google Scholar 

  • Pichler A, Gast A, Seeler JS, Dejean A, Melchior F . (2002). Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Cell 108: 109–120.

    Article  CAS  Google Scholar 

  • Pietersen AM, van der Eb MM, Rademaker HJ, van den Wollenberg DJ, Rabelink MJ, Kuppen PJ et al. (1999). Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Therapy 6: 882–892.

    Article  CAS  Google Scholar 

  • Poon IK, Oro C, Dias MM, Zhang J, Jans DA . (2005a). Apoptin nuclear accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells. Cancer Res 65: 7059–7064.

    Article  CAS  Google Scholar 

  • Poon IK, Oro C, Dias MM, Zhang JP, Jans DA . (2005b). A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin. J Virol 79: 1339–1341.

    Article  CAS  Google Scholar 

  • Regad T, Chelbi-Alix MK . (2001). Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20: 7274–7286.

    Article  CAS  Google Scholar 

  • Renshaw RW, Soine C, Weinkle T, O'Connell PH, Ohashi K, Watson S et al. (1996). A hypervariable region in VP1 of chicken infectious anemia virus mediates rate of spread and cell tropism in tissue culture. J Virol 70: 8872–8878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MS, Dargemont C, Hay RT . (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654–12659.

    Article  CAS  Google Scholar 

  • Rohn JL, Zhang YH, Aalbers RI, Otto N, Den Hertog J, Henriquez NV et al. (2002). A tumor-specific kinase activity regulates the viral death protein Apoptin. J Biol Chem 277: 50820–50827.

    Article  CAS  Google Scholar 

  • Ryu SW, Chae SK, Kim E . (2000). Interaction of Daxx, a Fas binding protein, with sentrin and Ubc9. Biochem Biophys Res Commun 279: 6–10.

    Article  CAS  Google Scholar 

  • Schoop RA, Kooistra K, Baatenburg De Jong RJ, Noteborn MH . (2004). Bcl-xL inhibits p53- but not apoptin-induced apoptosis in head and neck squamous cell carcinoma cell line. Int J Cancer 109: 38–42.

    Article  CAS  Google Scholar 

  • Song J, Zhang Z, Hu W, Chen Y . (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122–40129.

    Article  CAS  Google Scholar 

  • Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N et al. (2004). SUMO modification of Huntingtin and Huntington's disease pathology. Science 304: 100–104.

    Article  CAS  Google Scholar 

  • Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368–35374.

    Article  CAS  Google Scholar 

  • Tavassoli M, Guelen L, Luxon BA, Gaken J . (2005). Apoptin: Specific killer of tumor cells? Apoptosis 10: 717–724.

    Article  CAS  Google Scholar 

  • van der Eb MM, Pietersen AM, Speetjens FM, Kuppen PJ, van de Velde CJ, Noteborn MH et al. (2002). Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther 9: 53–61.

    Article  CAS  Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. (1998a). Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547–1551.

    Article  CAS  Google Scholar 

  • Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. (1998b). PML is essential for multiple apoptotic pathways. Nat Genet 20: 266–272.

    Article  CAS  Google Scholar 

  • Xirodimas DP, Chisholm J, Desterro JM, Lane DP, Hay RT . (2002). P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett 528: 207–211.

    Article  CAS  Google Scholar 

  • Zhang YH, Abrahams PJ, van der Eb AJ, Noteborn MH . (1999). The viral protein apoptin induces apoptosis in UV-C-irradiated cells from individuals with various hereditary cancer-prone syndromes. Cancer Res 59: 3010–3015.

    CAS  PubMed  Google Scholar 

  • Zhuang SM, Shvarts A, Jochemsen AG, van Oorschot AA, van der Eb AJ, Noteborn MH . (1995). Differential sensitivity to Ad5 E1B-21kD and Bcl-2 proteins of apoptin-induced versus p53-induced apoptosis. Carcinogenesis 16: 2939–2944.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank E Jaffray, M Noteborn, OG Engelhardt and PP Pandolfi for valuable materials and helpful discussion. This work was supported by the Deutsche Krebshilfe, the Deutsche Forschungsgemeinschaft, the Landesstiftung Baden-Württemberg and the Anti-Cancer Council of Victoria (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, K., Hofmann, T., Jans, D. et al. Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene 26, 1557–1566 (2007). https://doi.org/10.1038/sj.onc.1209923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209923

Keywords

This article is cited by

Search

Quick links