Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterizing a rat Brca2 knockout model

Abstract

Evidence exists that BRCA2 carriers may have an elevated risk of breast, ovarian, colon, prostate, and pancreatic cancer. In general, carriers are defined as individuals with protein truncating mutations within the BRCA2 gene. Many Brca2 knockout lines have been produced and characterized in the mouse. We previously produced a rat Brca2 knockout strain in which there is a nonsense mutation in exon 11 between BRC repeats 2 and 3, and a truncated protein is produced. Interestingly, while such a mutation in homozygous mice would lead to limited survival of approximately 3 months, the Brca2−/− rats are 100% viable and the vast majority live to over 1 year of age. Brca2−/− rats show a phenotype of growth inhibition and sterility in both sexes. Aspermatogenesis in the Brca2−/− rats is due to a failure of homologous chromosome synapsis. Long-term phenotypes include underdeveloped mammary glands, cataract formation and lifespan shortening due to the development of tumors and cancers in multiple organs. The establishment of the rat Brca2 knockout model provides a means to study the role of Brca2 in increasing cancer susceptibility and inducing a novel ocular phenotype not previously associated with this gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allers T, Lichten M . (2001). Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106: 47–57.

    Article  CAS  Google Scholar 

  • Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K et al. (1998). Atm deficiency results in severe meiotic disruption as early as leptonema of prophase 1. Development 125: 4007–4017.

    CAS  PubMed  Google Scholar 

  • Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R . (1997). The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet 6: 53–58.

    Article  CAS  Google Scholar 

  • Bigsby RM, Cardenas H, Caperell-Grant A, Grubbs CJ . (1999). Protective effects of estrogen in a rat model of age-related cataracts. Proc Natl Acad Sci USA 96: 9328–9332.

    Article  CAS  Google Scholar 

  • Bork P, Blomberg N, Nilges M . (1996). Internal repeats in the BRCA2 protein sequence. Nat Genet 13: 22–23.

    Article  CAS  Google Scholar 

  • Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR . (1981). Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91: 95–102.

    Article  CAS  Google Scholar 

  • Brown NM, Lamartiniere CA . (1995). Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ Health Perspect 103: 708–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E et al. (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 17: 423–430.

    Article  CAS  Google Scholar 

  • Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B et al. (2001). Space radiation and cataracts in astronauts. Radiat Res 156: 460–466.

    Article  CAS  Google Scholar 

  • Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR et al. (2001). Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7: 273–282.

    Article  CAS  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB . (1994). Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107: 2749–2760.

    CAS  PubMed  Google Scholar 

  • Dynlacht JR, Tyree C, Valluri S, DesRosiers C, Caperell-Grant A, Mendonca MS et al. (2006). Effect of estrogen on radiation-induced cataractogenesis. Radiat Res 165: 9–15.

    Article  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Goedecke W, Heyting C . (2000). Localisation of RAD50 and MRE11 in spermatocyte nuclei of mouse and rat. Chromosoma 109: 123–132.

    Article  CAS  Google Scholar 

  • Elliott B, Jasin M . (2002). Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59: 373–385.

    Article  CAS  Google Scholar 

  • Friedman LS, Thistlethwaite FC, Patel KJ, Yu VP, Lee H, Venkitaraman AR et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res 58: 1338–1343.

    CAS  PubMed  Google Scholar 

  • Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS et al. (2003). Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 17: 2021–2035.

    Article  CAS  Google Scholar 

  • Hunter N, Kleckner N . (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106: 59–70.

    Article  CAS  Google Scholar 

  • Keeney S . (2001). Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52: 1–53.

    Article  CAS  Google Scholar 

  • Klein BE, Klein R, Lee KE . (1998). Incidence of age-related cataract: the Beaver Dam Eye Study. Arch Ophthalmol 116: 219–225.

    CAS  PubMed  Google Scholar 

  • Liu JG, Yuan L, Brundell E, Bjorkroth B, Daneholt B, Hoog C . (1996). Localization of the N-terminus of SCP1 to the central element of the synaptonemal complex and evidence for direct interactions between the N-termini of SCP1 molecules organized head-to-head. Exp Cell Res 226: 11–19.

    Article  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J et al. (2001). Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27: 271–276.

    Article  CAS  Google Scholar 

  • McAllister KA, Bennett LM, Houle CD, Ward T, Malphurs J, Collins NK et al. (2002). Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res 62: 990–994.

    CAS  PubMed  Google Scholar 

  • McAllister KA, Houle CD, Malphurs J, Ward T, Collins NK, Gersch W et al. (2006). Spontaneous and irradiation-induced tumor susceptibility in BRCA2 germline mutant mice and cooperative effects with a p53 germline mutation. Toxicol Pathol 34: 187–198.

    Article  CAS  Google Scholar 

  • Moens PB, Pearlman RE, Heng HH, Traut W . (1998). Chromosome cores and chromatin at meiotic prophase. Curr Top Dev Biol 37: 241–262.

    Article  CAS  Google Scholar 

  • Mohr U, Dungworth DL, Capen CC (eds). (1994). Pathobiology of the Aging Rat, Vol. 2. ILSI Press: Washington, DC, 93pp.

    Google Scholar 

  • Moynahan ME . (2002). The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene 21: 8994–9007.

    Article  CAS  Google Scholar 

  • Nakazawa M, Tawaratani T, Uchimoto H, Kawaminami A, Ueda M, Ueda A et al. (2001). Spontaneous neoplastic lesions in aged Sprague-Dawley rats. Exp Anim 50: 99–103.

    Article  CAS  Google Scholar 

  • Pellegrini L, Venkitaraman A . (2004). Emerging functions of BRCA2 in DNA recombination. Trends Biochem Sci 29: 310–316.

    Article  CAS  Google Scholar 

  • Roeder GS . (1997). Meiotic chromosomes: it takes two to tango. Genes Dev 11: 2600–2621.

    Article  CAS  Google Scholar 

  • Samuelson DJ, Haag JD, Lan H, Monson DM, Shultz MA, Kolman BD et al. (2003). Physical evidence of Mcs5, a QTL controlling mammary carcinoma susceptibility, in congenic rats. Carcinogenesis 24: 1445–1460.

    Article  Google Scholar 

  • Sarkisian CJ, Master SR, Huber LJ, Ha SI, Chodosh LA . (2001). Analysis of murine Brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals. J Biol Chem 276: 37640–37648.

    Article  CAS  Google Scholar 

  • Schulze W, Thoms F, Knuth UA . (1999). Testicular sperm extraction: comprehensive analysis with simultaneously performed histology in 1418 biopsies from 766 subfertile men. Hum Reprod Suppl 1: 82–96.

    Article  Google Scholar 

  • Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, Benedict J et al. (2004). BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131: 131–142.

    Article  CAS  Google Scholar 

  • Shivji MK, Venkitaraman AR . (2004). DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amsterdam) 3: 835–843.

    Article  CAS  Google Scholar 

  • Siaud N, Dray E, Gy I, Gerard E, Takvorian N, Doutriaux MP . (2004). Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. Embo J 23: 1392–1401.

    Article  CAS  Google Scholar 

  • Villeneuve AM, Hillers KJ . (2001). Whence meiosis? Cell 106: 647–650.

    Article  CAS  Google Scholar 

  • Worgul BV, David J, Odrich S, Merriam Jr GR, Medvedovsky C, Merriam JC et al. (1991). Evidence of genotoxic damage in human cataractous lenses. Mutagenesis 6: 495–499.

    Article  CAS  Google Scholar 

  • Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ . (2002). Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA 99: 9836–9839.

    Article  CAS  Google Scholar 

  • Yoshida K, Miki Y . (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95: 866–871.

    Article  CAS  Google Scholar 

  • Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR et al. (2003). Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21: 645–651.

    Article  CAS  Google Scholar 

  • Zhoucun A, Zhang S, Yang Y, Ma Y, Zhang W, Lin L . (2006). The common variant N372 H in BRCA2 gene may be associated with idiopathic male infertility with azoospermia or severe oligozoospermia. Eur J Obstet Gynecol Reprod Biol 124: 61–64.

    Article  CAS  Google Scholar 

  • Zickler D, Kleckner N . (1999). Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33: 603–754.

    Article  CAS  Google Scholar 

  • Zierhut D, Lohr F, Schraube P, Huber P, Wenz F, Haas R et al. (2000). Cataract incidence after total-body irradiation. Int J Radiat Oncol Biol Phys 46: 131–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Ruth Sullivan (UW Research Animals Resource Center) for assistance in analyzing histopathology samples. This work was supported by the following grants, NIH CA106216 and DOD W81XWH-04-1-0436. Peti Thuwajit was supported by TRF-UW Postdoctoral Research Scholar #IPD4680004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M N Gould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotroneo, M., Haag, J., Zan, Y. et al. Characterizing a rat Brca2 knockout model. Oncogene 26, 1626–1635 (2007). https://doi.org/10.1038/sj.onc.1209960

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209960

Keywords

This article is cited by

Search

Quick links