Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain

Abstract

Alveolar rhabdomyosarcoma (aRMS), an aggressive skeletal muscle cancer, carries a unique t(2;13) chromosomal translocation resulting in the formation of a chimeric transcription factor PAX3-FKHR. This fusion protein contains the intact DNA-binding domains (PD: paired box binding domain; HD: paired-type homeodomain) of Pax3 fused to the activation domain of FKHR. Cells expressing Pax3 and PAX3-FKHR show vastly different gene expression patterns, despite that they share the same DNA-binding domains. We present evidence of a gain of function mechanism that allows the fusion protein to recognize and transcriptionally activate response elements containing a PD-specific binding site. This DNA recognition specificity is in contrast to the requirement for Pax3-specific target sequences that must contain a composite of PD-and HD-binding sites. Domain swapping studies suggest that an increased structural flexibility could account for the relaxed DNA targeting specificity in PAX3-FKHR. Here, we identify myogenin gene as a direct target of PD-dependent PAX3-FKHR activation pathway in vitro and in vivo. We demonstrate that PAX3-FKHR could induce myogenin expression in undifferentiated myoblasts by a MyoD independent pathway, and that PAX3-FKHR is directly involved in myogenin expression in aRMS cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Anderson J, Ramsay A, Gould S, Pritchard-Jones K . (2001). Embryonic expression of the tumor-associated PAX3-FKHR fusion protein interferes with the developmental functions of Pax3. Am J Path 159: 1089–1096.

    Article  CAS  Google Scholar 

  • Barr FG . (1997). Fusions involving paired box and fork head family transcription factors in the pediatric cancer alveolar rhabdomyosarcoma. Curr Topics Micro Immun 220: 113–129.

    CAS  Google Scholar 

  • Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS . (1993). Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3: 113–117.

    Article  CAS  Google Scholar 

  • Begum S, Emani N, Cheung A, Wilkins O, Der S, Hamel PA . (2005). Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24: 1860–1872.

    Article  CAS  Google Scholar 

  • Bernasconi M, Remppis A, Fredericks WJ, Rauscher III FJ, Schafer BW . (1996). Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93: 13164–13169.

    Article  CAS  Google Scholar 

  • Buchberger A, Ragge K, Arnold HH . (1994). The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2. J Biol Chem 269: 17289–17296.

    CAS  PubMed  Google Scholar 

  • Cao Y, Wang C . (2000). The COOH-terminal transactivation domain plays a key role in regulating the in vitro and in vivo function of Pax3 homeodomain. J Biol Chem 275: 9854–9862.

    Article  CAS  Google Scholar 

  • Chalepakis G, Goulding M, Read A, Strachan R, Gruss P . (1994a). Moleulcar basis of splotch and Waardenburg Pax-3 mutations. Proc Natl Acad Sci USA 91: 3685–3689.

    Article  CAS  Google Scholar 

  • Chalepakis G, Jones FS, Eelman GM, Gruss P . (1994b). Pax-3 contains domains for transcription activation and transcription inhibition. Proc Natl Acad Sci USA 91: 12745–12749.

    Article  CAS  Google Scholar 

  • Chalepakis G, Gruss P . (1995). Identification of DNA recognition sequences for the Pax3 paired domain. Gene 162: 267–270.

    Article  CAS  Google Scholar 

  • Cheng TC, Hanley TA, Mudd J, Merlie JP, Olson EN . (1992). Mapping of myogenin transcription during embryogenesis using transgenes linked to the myogenin control region. J Cell Biol 119: 1649–1656.

    Article  CAS  Google Scholar 

  • Cheng TC, Wallace MC, Merlie JP, Olson E.N . (1993). Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261: 215–218.

    Article  CAS  Google Scholar 

  • De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G et al. (2006). Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 118: 2772–2781.

    Article  CAS  Google Scholar 

  • Dias P, Chen B, Dilday B, Palmer H, Hosoi H, Singh S et al. (2000). Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Path 156: 399–408.

    Article  CAS  Google Scholar 

  • Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, Houghton PJ et al. (1987). A specific abnormality in rhabdomyosarcoma. Cyto Cell Genet 45: 148–155.

    Article  CAS  Google Scholar 

  • Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN . (1995). Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem 270: 11719–11722.

    Article  CAS  Google Scholar 

  • Epstein JA, Song B, Lakkis M, Wang C . (1998). Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol Cell Biol 18: 4118–4130.

    Article  CAS  Google Scholar 

  • Folpe AL . (2002). MyoD1 and myogenin expression in human neoplasia: a review and update. Adv Anat Path 9: 198–203.

    Article  Google Scholar 

  • Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG et al. (1995). The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15: 1522–1535.

    Article  CAS  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P . (1991). Pax3, a novel murine DNA binding proein expressed duringearly neurogeneisis. EMBO J 10: 1135–1147.

    Article  CAS  Google Scholar 

  • Hostein I, Andraud-Fregeville M, Guillou L, Terrier-Lacombe MJ, Deminiere C, Ranchere D et al. (2004). Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens. Cancer 101: 2817–2824.

    Article  CAS  Google Scholar 

  • Jen Y, Weintraub H, Benezra R . (1992). Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6: 1466–1479.

    Article  CAS  Google Scholar 

  • Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . (2004a). Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18: 2614–2626.

    Article  CAS  Google Scholar 

  • Keller C, Hansen MS, Coffin CM, Capecchi MR . (2004b). Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18: 2608–2613.

    Article  CAS  Google Scholar 

  • Khan J, Bittner ML, Sall LH, Teichmann U, Azorsa DO, Gooden GC et al. (1999). cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96: 13264–13269.

    Article  CAS  Google Scholar 

  • Lam PYP, Sublett JE, Hollenbach AD, Roussel MF . (1999). The oncogenic potential of the PAX3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-Box DNA binding domain. Mol Cell Biol 19: 594–601.

    Article  CAS  Google Scholar 

  • Malik S, Huang CF, Schmidt J . (1995). The role of the CANNTG promoter element (E box) and the myocyte-enhancer-binding-factor-2 (MEF-2) site in the transcriptional regulation of the chick myogenin gene. Eur J Biochem 230: 88–96.

    Article  CAS  Google Scholar 

  • Michelagnoli MP, Burchill S.A, Cullinane C, Selby PJ, Lewis IJ . (2003). Myogenin--a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol 40: 1–8.

    Article  Google Scholar 

  • Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J et al. (2000). Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14: 574–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidler S, Fredericks WJ, Rauscher JF, Barr GF, Vogt PK . (1996). The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 93: 9805–9809.

    Article  CAS  Google Scholar 

  • Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW . (1993). Fusion of PAX3 to a member of the Forkhead family of transcripton factors in human alveolar rhabdomyosarcoma. Cancer Res 53: 5108–5112.

    CAS  PubMed  Google Scholar 

  • Spicer DB, Rhee J, Cheung WL, Lassar AB . (1996). Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272: 1476–1480.

    Article  CAS  Google Scholar 

  • Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D et al. (1998). Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci USA 95: 14220–14225.

    Article  CAS  Google Scholar 

  • Tapscott SJ, Thayer MJ, Weintraub H . (1993). Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 259: 1450–1453.

    Article  CAS  Google Scholar 

  • Turc-Carel C, Lizard-Nacol S, Justrabo E, Favrot M, Tabone E . (1986). Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cyotgeneti 19: 361–362.

    Article  CAS  Google Scholar 

  • Wang-Wuu S, Soukup S, Ballard E, Gotwals B, Lampkin B . (1988). Chromosomal analysis of sixteen human rhabdomyosarcoma. Cancer Res 48: 983–987.

    CAS  PubMed  Google Scholar 

  • Weintraub M, Kalebic T, Helman JL, Bhatia GK . (1997). Disruption of the MyoD/p21 pathway in rhabdomyosarcoma. Sarcoma 1: 135–141.

    Article  CAS  Google Scholar 

  • Yee SP, Rigby PW . (1993). The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev 7: 1277–1289.

    Article  CAS  Google Scholar 

  • Zhang L, Wang C . (2006). F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 25: 2615–2627.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Reed Graves for the critical review of this manuscript. The work is supported by NIH grant (CA074907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wang, C. Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain. Oncogene 26, 1595–1605 (2007). https://doi.org/10.1038/sj.onc.1209958

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209958

Keywords

This article is cited by

Search

Quick links