Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of cyclin B1 and CDK activity during apoptosis induced by camptothecin treatment

Abstract

We have studied the role of cyclins and cyclin-dependent kinase (CDK) activity in apoptosis induced by camptothecin (CPT). In this model, 22% of the cells stain for annexin-V at 24 h and then proceed to be 93% positive by 72 h. This time window permits the analysis of cyclins in cells that are committed to apoptosis but not yet dead. We provide evidence that cyclin protein levels and then associated kinase levels increase after CPT treatment. Strikingly, cyclin B1 and cyclin E1 proteins are present at the same time in CPT treated HT29 cells. Although cyclin B1 and E1 CDK complexes are activated in CPT treated cells, only the cyclin B1 complex is required for apoptosis since reduction of cyclin B1 by RNAi or roscovitine treatment reduces the number of annexin-V-stained cells. We have detected poorly organized chromosomes and phosphorylated histone H3 epitopes at the time of maximum cyclin B1/CDK kinase activity in CPT-treated cells, which suggests that these cells enter a mitotic catastrophe. Understanding which CDKs are required for apoptosis may allow us to better adapt CDK inhibitors for use as anti-cancer compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CDK:

cyclin-dependent kinase

CPT:

camptothecin

FCS:

fetal calf serum

PI:

propidium iodide

References

  • Abal M, Bras-Goncalves R, Judde JG, Fsihi H, De Cremoux P, Louvard D et al. (2004). Oncogene 23: 1737–1744.

  • Adachi S, Obaya AJ, Han Z, Ramos-Desimone N, Wyche JH, Sedivy JM . (2001). Mol Cell Biol 21: 4929–4937.

  • Bartek J, Lukas J . (2001). FEBS Lett 490: 117–122.

  • Borgne A, Golsteyn RM . (2003). Progress in Cell Cycle Research, Vol 5 In: Meijer L, Jézéquel A and Roberge M (eds). Life in Progress Editions: Roscoff, France, pp 453–459.

    Google Scholar 

  • Castedo M, Perfettini J-L, Roumier T, Kroemer G . (2002a). Cell Death Diff 9: 1287–1293.

  • Castedo M, Roumier T, Blanco J, Ferri KF, Barretina J, Tintignac LA et al. (2002b). EMBO J 15: 4070–4080.

  • Choi KS, Eom YW, Kang Y, Ha MJ, Rhee H, Yoon J-W et al. (1999). J Biol Chem 274: 31775–31783.

  • Coqueret O . (2003). Trends Cell Biol 13: 65–70.

  • De Luca A, De Maria R, Baldi A, Trotta R, Facchiano F, Giordano A et al. (1997). J Cell Biochem 64: 579–585.

  • Elbashir SM, Harborth J, Weber K, Tuschl T . (2002). Methods 26: 199–213.

  • Fotedar R, Flatt J, Gupta S, Margolis RL, Fitzgerald P, Messier H et al. (1995). Mole Cell Biol 15: 932–942.

  • Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA et al. (2003). J Biol Chem 278: 20303–20312.

  • Golsteyn RM . (2005). Cancer Lett 217: 129–138.

  • Guo M, Hay BA . (1999). Curr Opin Cell Biol 11: 745–752.

  • Hakem A, Sasaki T, Kozieradzki I, Penninger JM . (1999). J Exp Med 189: 957–967.

  • Hartwell LH, Kastan MB . (1994). Science 266: 1821–1828.

  • Harvey KJ, Blomquist JF, Ucker DS . (1998). Mole Cell Biol 18: 2912–2922.

  • Harvey KJ, Lukovic D, Ucker DS . (2000). J Cell Biol 148: 59–72.

  • Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ . (1999). J Clin Invest 103: 597–604.

  • Hsu S, Yin S, Liu M, Reichert U, Ho WL . (1999). Exp Cell Res 252: 332–341.

  • Hyzy M, Bozko P, Konopa J, Skladanowski A . (2005). Biochem Pharmacol 69: 801–809.

  • Knockaert M, Greengard P, Meijer L . (2002). Trends Pharmacol Sci 9: 417–425.

  • Konishi Y, Lehtinen M, Donovan N, Bonni A . (2002). Mol Cell 9: 1005–1016.

  • Léonce S, Perez V, Lambel S, Peyroulan D, Tillequin F, Michel S et al. (2001). Mol Pharmacol 60: 1383–1391.

  • Li K, Lin SY, Brunicardi FC, Seu P . (2003). Cancer Res 63: 3593–3597.

  • Livak KJ, Schmittgen TD . (2001). Methods 25: 402–408.

  • MacCallum DE, Melville J, Frame S, Watt K, Anderson S, Gianella-Borradori A et al. (2005). Cancer Res 65: 5399–5407.

  • Maity A, Hwang A, Janss A, Phillips P, McKenna WG, Muschel RJ . (1996). Oncogene 13: 1647–1657.

  • Mazumder S, Gong B, Almasan A . (2000). Oncogene 19: 2828–2835.

  • Mazumder S, Gong B, Chen Q, Drazba JA, Buchsman JC, Almasan A . (2002). Mol Cell Biol 22: 2398–2409.

  • Meijer L, Arion D, Golsteyn R, Pines J, Brizuela L, Hunt T et al. (1989). EMBO J 8: 2275–2282.

  • Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N et al. (1997). Eur J Biochem 243: 527–536.

  • Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R . (1994). Proc Natl Acad Sci 91: 3754–3758.

  • Meikrantz W, Schlegel R . (1996). J Biol Chem 271: 10205–10209.

  • Padmanabhan J, Park DS, Greene LA, Shelanski ML . (1999). J Neurosci 19: 8747–8756.

  • Park DS, Farinelli SE, Greene LA . (1996). J Biol Chem 271: 8161–8169.

  • Pines J, Hunter T . (1989). Cell 58: 833–846.

  • Porter DC, Zhang N, Danes C, McGahren MJ, Harwell RM, Faruki S et al. (2001). Mol Cell Biol 21: 6254–6269.

  • Porter LA, Cukier IH, Lee JM . (2003). Blood 101: 1928–1933.

  • Porter LA, Singh G, Lee JM . (2000). Blood 95: 2645–2650.

  • Price PM, Safirstein RL, Megyesi J . (2004). Am J Physiol Renal Physiol 286: 378–384.

  • Sauve DM, Anderson HJ, Ray JM, James WM, Roberge M . (1999). J Cell Biol 145: 225–235.

  • Scatena CD, Stewart ZA, Mays D, Tang LJ, Keefer CJ, Leach SD et al. (1998). J Biol Chem 273: 30777–30794.

  • Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y . (1997). Cancer Res 57: 4029–4035.

  • Shen M, Feng Y, Gao C, Tao D, Gong J . (2002). Chin J Oncol 24: 215–218.

  • Shen M, Feng Y, Gao C, Tao D, Hu J, Reed E et al. (2004). Cancer Res 64: 1607–1610.

  • Shi L, Chen G, He D, Bosc DG, Litchfield DW, Greenberg AH . (1996). J Immunol 157: 2381–2385.

  • Shi L, Niskioka WK, Th’ng J, Bradbury EM, Litchfield DW, Greenberg AH . (1994). Nature 263: 1143–1145.

  • Shimizu T, O’Connor PM, Kohn K, Pommier Y . (1995). Cancer Res 55: 228–231.

  • Shirvan A, Ziv I, Zilkha-Falb R, Machlyn T, Barzilai A, Melamed E . (1998). Neurochem Res 23: 767–777.

  • Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . (2000). Nat Cell Biol 2: 672–676.

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J et al. (2002). Oncogene 21: 8320–8333.

  • Tanizawa A, Fujimori A, Fujimori Y, Pommier Y . (1994). J Natl Cancer Inst 86: 836–842.

  • Vesely J, Havlicek L, Strnad M, Blow JJ, Donella-Deana A, Pinna L et al. (1994). Eur J Biochem 224: 771–786.

  • Wang J, Walsh K . (1996). Science 273: 359–361.

  • Yuan J, Yan R, Kramer A, Eckerdt F, Roller M, Kaufmann M et al. (2004). Oncogene 23: 5843–5852.

Download references

Acknowledgements

This work was supported by the Institut de Recherches Servier as part of a program ‘Alliance Stratégique’ with the CNRS. We thank our colleagues in the Cancer Drug Discovery division at the IdRS for valuable discussions and Marie Knockaert for pg beads and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Golsteyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgne, A., Versteege, I., Mahé, M. et al. Analysis of cyclin B1 and CDK activity during apoptosis induced by camptothecin treatment. Oncogene 25, 7361–7372 (2006). https://doi.org/10.1038/sj.onc.1209718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209718

Keywords

This article is cited by

Search

Quick links