Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor γ

Abstract

An inverse relationship exists between the expression of 15-lipoxygenase-2 (15-LOX-2) and peroxisome proliferator-activated receptor γ (PPARγ) in normal prostate epithelial cells (PrECs) compared with their expression in prostate carcinoma cells (PC-3). The reason for this difference, however, is unknown. We hypothesized that this inverse expression partly involves the 15-LOX-2 promoter and 15-S-hydroxyeicosatetraenoic acid (15-(S)-HETE), a product of 15-LOX-2 that binds to PPARγ. We identified an active steroid nuclear receptor half-site present in the 15-LOX-2 promoter fragment F-5 (−618/+177) that can interact with PPARγ. After forced expression of wild-type PPARγ, 15-(S)-HETE (1 μ M) decreased F-5 reporter activity in PrECs whereas forced expression of 15-LOX-2 resulted in 15-(S)-HETE production which enhanced F-5 activity in PC-3. In contrast, the expression of dominant-negative PPARγ reversed the transcriptional activation of F-5 by enhancing it 202-fold in PrEC or suppressing it in PC-3; the effect in PC-3 was positively increased 150-fold in the presence of 15-(S)-HETE (1 μ M). Peroxisome proliferator-activated receptor γ interacted with 15-LOX-2 promoter sequences in pulldown experiments using biotinylated 15-LOX-2 (−560/−596 bp) oligonucleotides. In gelshift analyses PPARγ and orphan receptor RORα were shown to interact with the F-5 fragment in PC-3 cells. These data suggest that crosstalk mechanisms exist between the 15-LOX-2 gene and PPARγ to counterbalance expression and help explain the inverse relationship of these genes in normal versus cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Berhane K, Boggaram V . (2001). Gene 268: 141–151.

  • Bhatia B, Maldonado CJ, Tang S, Chandra D, Klein RD, Chopra D et al. (2003). J Biol Chem 278: 25091–25100.

  • Bhatia B, Tang S, Yang P, Doll A, Aumueller G, Newman RA et al. (2005). Oncogene 24: 2583–3595.

  • Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C . (2003). J Steroid Biochem Mol Biol 85: 267–273.

  • Brash AR, Boeglin WE, Chang MS . (1997). Proc Natl Acad Sci USA 94: 6148–6152.

  • Butler R, Mitchell SH, Tindall DJ, Young CY . (2000). Cell Growth Differ 11: 49–61.

  • Cato AC, Nestl A, Mink S . (2002). Sci STKE 2002: RE9.

  • Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M, Moller DE et al. (1996). Biochem Biophys Res Commun 224: 431–437.

  • Flores AM, Li L, McHugh NG, Aneskievich BJ . (2005). Chem Biol Interact 151: 121–132.

  • Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G . (1994). Genes Dev 8: 538–553.

  • Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C et al. (2000). J Biol Chem 275: 5754–5759.

  • Hsi LC, Wilson LC, Eling TE . (2002). J Biol Chem 277: 40549–40556.

  • Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C et al. (1999). Nature 400: 378–382.

  • Jack GS, Brash AR, Olson SJ, Manning S, Coffey CS, Smith Jr JA et al. (2000). Hum Pathol 31: 1146–1154.

  • Kang LT, Vanderhoek JY . (1998). J Lipid Res 39: 1476–1482.

  • Kilty I, Logan A, Vickers PJ . (1999). Eur J Biochem 266: 83–93.

  • Kim J, Yang P, Sabichi A, Llansa N, Mendoza G, Subbarayan V et al. (2005). Cancer Res 65: 6189–6198.

  • Koeffler H . (2003). Clin Cancer Res 9: 1–9.

  • Krieg P, Marks F, Furstenberger G . (2001). Genomics 73: 323–330.

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. (1995). Cell 83: 835–839.

  • Moretti RM, Marelli MM, Motta M, Limonta P . (2002). Oncol Rep 9: 1139–1143.

  • Moretti RM, Marelli MM, Motta M, Polizzi D, Monestiroli S, Pratesi G et al. (2001). Prostate 46: 327–335.

  • Moretti RM, Montagnani Marelli M, Sala A, Motta M, Limonta P . (2004). Int J Cancer 112: 87–93.

  • Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . (1998). Cell 93: 229–240.

  • Salas TR, Reddy SA, Clifford JL, Davis RJ, Kikuchi A, Lippman SM et al. (2003). J Biol Chem 278: 41338–41346.

  • Schreiber E, Matthias P, Muller MM, Schaffner W . (1989). Nucleic Acids Res 17: 6419.

  • Shankaranarayanan P, Nigam S . (2003). J Immunol 170: 887–894.

  • Shappell SB, Boeglin WE, Olson SJ, Kasper S, Brash AR . (1999). Am J Pathol 155: 235–245.

  • Shappell SB, Gupta RA, Manning S, Whitehead R, Boeglin WE, Schneider C et al. (2001). Cancer Res 61: 497–503.

  • Sharma GD, Ottino P, Bazan NG, Bazan HE . (2005). J Biol Chem 280: 7917–7924.

  • Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kahlen JP et al. (1995). J Biol Chem 270: 7037–7040.

  • Subbarayan V, Sabichi AL, Kim J, Llansa N, Logothetis CJ, Lippman SM et al. (2004). Cancer Epidemiol Biomarkers Prev 13: 1710–1716.

  • Subbarayan V, Sabichi AL, Llansa N, Lippman SM, Menter DG . (2001). Cancer Res 61: 2720–2726.

  • Subbarayan V, Xu XC, Kim J, Yang P, Hoque A, Sabichi AL et al. (2005). Neoplasia 7: 280–293.

  • Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J et al. (2002). J Biol Chem 277: 16189–16201.

  • Tang S, Bhatia B, Zhou J, Maldonado CJ, Chandra D, Kim E et al. (2004). Oncogene 23: 6942–6953.

  • Warnmark A, Treuter E, Wright AP, Gustafsson JA . (2003). Mol Endocrinol 17: 1901–1909.

  • Wigren J, Surapureddi S, Olsson AG, Glass CK, Hammarstrom S, Soderstrom M . (2003). J Endocrinol 177: 207–214.

  • Xu XC, Shappell SB, Liang Z, Song S, Menter D, Subbarayan V et al. (2003). Neoplasia 5: 121–127.

Download references

Acknowledgements

We thank Dr IC Kilty (Pfizer Global Research and Development, Sandwich, Kent, UK) for providing the 15-LOX-2 expression plasmid, Dr VKK Chatterjee (University of Cambridge, Cambridge, UK) for the dnPPARγ expression plasmid, Dr V Giguere (University of McGill, Canada) for the RORα 1 expression vector and Dr Alex Elbrecht (Merck & Co., Inc. NJ, USA) for the hPPARγ expression plasmids. This work was supported by Grant TPRN-99-240-01-CNE-1 from the American Cancer Society and by National Cancer Institute Grants P01 CA-91844, R21 CA-10241 and R21 CA-102145 and a grant from the Cancer Research and Prevention Foundation. Also supported in part by a National Cancer Institute grant CA-16672-28. We also thank Dr EM McDonald in the Department of Scientific Publications at M. D. Anderson Cancer Center for editorial expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Menter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbarayan, V., Krieg, P., Hsi, L. et al. 15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor γ. Oncogene 25, 6015–6025 (2006). https://doi.org/10.1038/sj.onc.1209617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209617

Keywords

This article is cited by

Search

Quick links