Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of the SNT-1/FRS2 phosphotyrosine binding domain inhibits activation of MAP kinase and PI3-kinase pathways and antiestrogen resistant growth induced by FGF-1 in human breast carcinoma cells

Abstract

Fibroblast growth factor (FGF) signaling can bypass the requirement for estrogen receptor (ER) activation in the growth of ER-positive (ER+) breast cancer cells. Fibroblast growth factor-1 stimulation leads to phosphorylation of the adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT-1) on C-terminal tyrosine residues, whereas it is constitutively bound through its N-terminal phosphotyrosine-binding domain (PTB) to FGF receptors (FGFRs). By expressing the PTB domain of SNT-1 (SNT-1 PTB) in an inducible manner in an ER+ breast carcinoma line, ML20, we asked whether we could uncouple FGFR activation from its downstream signaling components and abrogate FGF-1-induced antiestrogen-resistant growth. Induction of SNT-1 PTB resulted in a significant decrease of FGF-1-dependent tyrosine phosphorylation of endogenous SNT-1, strong inhibition of complex formation between SNT-1, Gab-1 and Sos-1, and reduced activation of Ras, mitogen-activated protein kinase (MAP kinase), and Akt. SNT-1 PTB also inhibited the phosphorylation of p70S6K on Thr421/Ser424 and Ser411, which may result from the abrogation of MAP kinase activity. Moreover, we also observed a decreased phosphorylation of the MAP kinase-independent site Thr389. This may reflect both inhibition of PI-3 kinase pathways and mammalian target of rapamycin (mTOR)-dependent signaling, as the phosphorylation of Thr389 site was sensitive to treatment with the PI3-K and mTOR inhibitors, LY294002 and rapamycin, respectively. Collectively these results suggest that SNT-1 plays a pivotal role in FGF-dependent activation of the Ras-MAP kinase, PI-3 kinase, and mTOR pathways in these cells. Fibroblast growth factor-1 dependent colony formation of ML20 cells in media containing the pure antiestrogen ICI 182,780 was also markedly inhibited upon induction of SNT-1 PTB, suggesting that blockade of FGFR–SNT-1 interactions might abrogate FGF-mediated antiestrogen resistance in breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

CCS:

charcoal-stripped calf serum

FBS:

fetal bovine serum

MAP kinase:

mitogen-activated protein kinase

Erk:

extracellular signal-regulated kinase

IMEM:

Improved Minimal Eagle's Medium

ER:

estrogen receptor

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

HRG-β1:

heregulin β1

PAGE:

polyacrylamide gel electrophoresis

PTB:

phosphotyrosine-binding domain

PRF:

phenol red free

RBD:

Ras-binding domain

SNT-1:

Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target. FRS2α, FGF receptor substrate 2α

IRES:

internal ribosome entry site

GPCR:

G-protein-coupled receptor

NGF:

nerve growth factor

BDNF:

brain-derived neurophophic factor

GDNF:

glial-derived neurotrophic factor

VEGF:

vascular endothelial growth factor

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, cohen P et al. (1996). EMBO J 15: 6541–6551.

  • Bell AC, West AG, Felsenfeld G . (2001). Science 291: 447–450.

  • Califano D, Rizzo C, D’Alessio A, Colucci-D’Amato GL, Cali G, Bartoli PC et al. (2000). J Biol Chem 275: 19297–19305.

  • Cheatham L, Monfar M, Chou MM, Blenis J . (1995). Proc Natl Acad Sci USA 92: 11696–11700.

  • Dennis PB, Pullen N, Pearson RB, Kozma SC, Thomas G . (1998). J Biol Chem 273: 14845–14852.

  • Dhalluin C, Yan K, Plotnikova O, Lee KW, Zeng L, Kuti M et al. (2000). Mol Cell 6: 921–929.

  • Dunican DJ, Williams EJ, Howell FV, Doherty P . (2001). Cell Growth Differ 12: 255–264.

  • Ehrhard KN, Jacoby JJ, Fu XY, Jahn R, Dohlman HG . (2000). Nat Biotechnol 18: 1075–1079.

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. (1998). J Biol Chem. 273: 18623–18632.

  • Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G . (1992). Proc Natl Acad Sci USA 89: 7282–7286.

  • Fingar DC, Blenis J . (2004). Oncogene 23: 3151–3171.

  • Gonzalez-Garcia A, Garrido E, Hernandez C, Alvarez B, Jimenez C, Cantrell DA et al. (2002). J Biol Chem 277: 1500–1508.

  • Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J . (2001). Proc Natl Acad Sci USA 98: 8578–8583.

  • Hadari YR, Kouhara H, Lax I, Schlessinger J . (1998). Mol Cell Biol 18: 3966–3973.

  • Han JW, Pearson RB, Dennis PB, Thomas G . (1995). J Biol Chem 270: 21396–21403.

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Cell 110: 177–189.

  • Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . (2001). Proc Natl Acad Sci USA 98: 9666–9670.

  • Iijima Y, Laser M, Shiraishi H, Willey CD, Sundaravadivel B, Xu L et al. (2002). J Biol Chem 277: 23065–23075.

  • Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhonen S et al. (1993). Int J Cancer 54: 378–382.

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H et al. (2003). Mol Cell 11: 895–904.

  • Kimpinski K, Mearow K . (2001). J Neurosci Res 63: 486–499.

  • Klint P, Kanda S, Claesson-Welsh L . (1995). J Biol Chem 270: 23337–23344.

  • Klint P, Kanda S, Kloog Y, Claesson-Welsh L . (1999). Oncogene 18: 3354–3364.

  • Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I et al. (1997). Cell 89: 693–702.

  • Koziczak M, Holbro T, Hynes NE . (2004). Oncogene 23: 3501–3508.

  • Kurebayashi J, McLeskey SW, Johnson MD, Lippman ME, Dickson RB, Kern FG . (1993). Cancer Res 53: 2178–2187.

  • Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M . (2001). Oncogene 20: 1929–1938.

  • Lamothe B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J . (2004). Mol Cell Biol 24: 5657–5666.

  • Lax I, Wong A, Lamothe B, Lee A, Frost A, Hawes J et al. (2002). Mol Cell 10: 709–719.

  • Manning BD, Cantley LC . (2003). Trends Biochem Sci 28: 573–576.

  • McLeskey SW, Kurebayashi J, Honig SF, Zwiebel J, Lippman ME, Dickson RB et al. (1993). Cancer Res 53: 2168–2177.

  • McLeskey SW, Zhang L, El-Ashry D, Trock BJ, Lopez CA, Kharbanda S et al. (1998). Clin Cancer Res 4: 697–711.

  • McLeskey SW, Zhang L, Kharbanda S, Kurebayashi J, Lippman ME, Dickson RB et al. (1996). Breast Cancer Res Treat 39: 103–117.

  • Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM . (1999). J Biol Chem 274: 9861–9870.

  • Moffa AB, Tannheimer SL, Ethier SP . (2004). Mol Cancer Res 2: 643–652.

  • Ong SH, Goh KC, Lim YP, Low BC, Klint P, Claesson-Welsh L et al. (1996). Biochem Biophys Res Commun 225: 1021–1026.

  • Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J et al. (2000). Mol Cell Biol 20: 979–989.

  • Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I . (2001). Proc Natl Acad Sci USA 98: 6074–6079.

  • Penault-Llorca F, Bertucci F, Adelaide J, Parc P, Coulier F, Jacquemier J et al. (1995). Int J Cancer 61: 170–176.

  • Price DJ, Mukhopadhyay NK, Avruch J . (1991). J Biol Chem 266: 16281–16284.

  • Qu Z, Thottassery JV, Van Ginkel S, Manuvakhova M, Westbrook L, Roland-Lazenby C et al. (2004). Gene 327: 61–73.

  • Rabin SJ, Cleghon V, Kaplan DR . (1993). Mol Cell Biol 13: 2203–2213.

  • Romanelli A, Dreisbach VC, Blenis J . (2002). J Biol Chem 277: 40281–40289.

  • Romanelli A, Martin KA, Toker A, Blenis J . (1999). Mol Cell Biol 19: 2921–2928.

  • Stoletov KV, Ratcliffe KE, Terman BI . (2002). FASEB J 16: 1283–1285.

  • Tsoulfas P, Stephens RM, Kaplan DR, Parada LF . (1996). J Biol Chem 271: 5691–5697.

  • Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W . (2000). Proc Natl Acad Sci USA 97: 7963–7968.

  • Wang F . (2002). In Vitro Cell Dev Biol Anim 38: 178–183.

  • Wang J-K, Xu H, Li H-C, Goldfarb M . (1996). Oncogene 13: 721–729.

  • Wu Y, Chen Z, Ullrich A . (2003). Biol Chem 384: 1215–1226.

  • Xie WQ, Rothblum LI . (1991). Biotechniques 11: 324 326–324, 327.

  • Xu H, Goldfarb M . (2001). J Biol Chem 276: 13049–13056.

  • Xu H, Lee KW, Goldfarb M . (1998). J Biol Chem 273: 17987–17990.

  • Yonezawa K, Tokunaga C, Oshiro N, Yoshino K . (2004). Biochem Biophys Res Commun 313: 437–441.

  • Yoshimura N, Sano H, Hashiramoto A, Yamada R, Nakajima H, Kondo M et al. (1998). Clin Immunol Immunopathol 89: 28–34.

  • Yuen EC, Mobley WC . (1999). Exp Neurol 159: 297–308.

  • Zhang L, Kharbanda S, Chen D, Bullocks J, Miller DL, Ding IYF et al. (1997). Oncogene 15: 2093–2108.

  • Zhang Y, Dong Z, Nomura M, Zhong S, Chen N, Bode AM et al. (2001). J Biol Chem 276: 20913–20923.

  • Zhang Y, Lin Y, Bowles C, Wang F . (2004). J Biol Chem 279: 55348–55354.

Download references

Acknowledgements

We thank Dr Bernard Vose (AstraZeneca, Cheshire, UK) for ICI182,780. This work was supported in part by NIH Grant CA50376 (to FGK) and US Army Department of Defense Breast Cancer Research Program DAMD 17-00-1-0434 (to FGK); UAB Comprehensive Cancer Center Core grant P30 CA13148 and UAB Center for AIDS Research Core grant P30 AI 27767. This work was also supported in part by the Adolph Weil Endowed Chair in Cancer Biology at Southern Research Institute (FGK). We also thank Sylvia and David McPherson at the Molecular Biology Core at UAB Center for AIDS for help with some vector constructions. JVT is the recipient of a Susan G Komen Breast Cancer Foundation grant (BCTR00-000456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F G Kern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manuvakhova, M., Thottassery, J., Hays, S. et al. Expression of the SNT-1/FRS2 phosphotyrosine binding domain inhibits activation of MAP kinase and PI3-kinase pathways and antiestrogen resistant growth induced by FGF-1 in human breast carcinoma cells. Oncogene 25, 6003–6014 (2006). https://doi.org/10.1038/sj.onc.1209592

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209592

Keywords

This article is cited by

Search

Quick links