Short Communication

Oncogene (2006) 25, 3463–3470. doi:10.1038/sj.onc.1209387; published online 30 January 2006

Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency

C J Lynch1 and J Milner1

1YCR p53 Research Laboratory, Department of Biology, University of York, York, UK

Correspondence: Professor J Milner, Biology, Zone 14, University of York, YCR p53 Research Group, Heslington, York, YO10 5DD, UK. E-mail:

Received 31 October 2005; Revised 5 December 2005; Accepted 6 December 2005; Published online 30 January 2006.



A haploid genotype may be insufficient to support normal wild-type function. Such haplo-insufficiency has recently been documented for numerous tumour suppressor genes. p53 is a crucial tumour suppressor governing DNA repair, cell cycle arrest and apoptosis via its role as a stress-responsive transcription factor. p53 haplo-insufficiency has been observed in vivo with human familial cancer in Li–Fraumeni Syndrome (LFS) and in mouse p53-knockout models of LFS. The increased tumorigenesis associated with loss of one p53 allele has been attributed to reduced p53-dependent stress responses. However, the underlying biochemical basis for such attenuated responses in p53+/- cells remains unclear. Here we have determined basal p53 messenger RNA (mRNA) and protein levels, and compared the p53 stress response in p53+/+, p53+/- and p53-/- isogenic clones derived from HCT116 cells. Basal expression of p53 in p53+/- cells was 25% relative to p53+/+ cells, and this differential was maintained following oncogenic stress. This deficiency was manifested at both p53 mRNA and protein levels and resulted in attenuated p53 stress responses, in particular for p21waf1 upregulation and survivin downregulation, and reduced G1 arrest and apoptosis. These observations identify a molecular basis for wild-type p53 haplo-insufficiency, which may explain the attenuated tumour-suppressive phenotype observed in cells with a single wild-type p53 allele and in humans with LFS.


p53, haplo-insufficiency, Li–Fraumeni, survivin, SIRT1, mRNA



These links to content published by NPG are automatically generated