Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Synergistic induction of the MUC4 mucin gene by interferon-γ and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways

Abstract

The transmembrane mucin, MUC4, is aberrantly expressed with a high incidence in human pancreatic adenocarcinomas and plays an important role in the pathogenesis of the disease. Our recent studies have shown that interferon-γ (IFNγ) and retinoic acid (RA) are important regulators of MUC4 in pancreatic tumour cells. Induction of MUC4 by IFNγ occurs via a novel pathway involving upregulation of the signal transducer and activator of transcription 1 (STAT-1), whereas its stimulation by RA requires mediation by the transforming growth factor β-2 (TGFβ-2). In this study, we have investigated the molecular mechanisms underlying the interaction of IFNγ and RA in MUC4 regulation in pancreatic tumour cells. We demonstrate that these reagents exert a synergistic induction of MUC4. Interestingly, while the upregulation of STAT-1 by IFNγ is partially inhibited by RA, IFNγ is shown to repress RA-driven TGFβ-2 induction, pointing to the involvement of alternative mechanism(s) in IFNγ–RA synergism. Moreover, a dose-dependent and cooperative induction of MUC4 promoter activity suggests a regulation at the transcriptional level, most likely by STAT-1 and RAR/RXR (RA receptor/retinoic X receptor) or other IFNγ/RA-induced secondary intermediate effectors. Our findings provide potential mechanisms that may account for the aberrant expression of MUC4 in pancreatic tumour cells and expose a novel molecular mechanism of gene induction, whereby a reprogramming of signalling pathway through alternative route(s) operates during a synergistic interaction of biological modifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Andrianifahanana M, Moniaux N and Batra SK . (2002). Proc. Am. Assoc. Cancer Res., 43, 607.

  • Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA, Buchler MW, Aubert JP and Batra SK . (2001). Clin. Cancer Res., 7, 4033–4040.

  • Andrianifahanana M, Moniaux N, Singh AP, Varshney GC and Batra SK . (2002). Proc. Am. Assoc. Cancer Res., 43, 1135.

  • Bach EA, Aguet M and Schreiber RD . (1997). Annu. Rev. Immunol., 15, 563–591.

  • Chelbi-Alix MK and Pelicano L . (1999). Leukemia, 13, 1167–1174.

  • Choudhury A, Singh RK, Moniaux N, El Metwally TH, Aubert JP and Batra SK . (2000). J. Biol. Chem., 275, 33929–33936.

  • Detjen KM, Farwig K, Welzel M, Wiedenmann B and Rosewicz S . (2001). Gut, 49, 251–262.

  • Gendler SJ and Spicer AP . (1995). Annu. Rev. Physiol., 57, 607–634.

  • Gianni M, Terao M, Fortino I, LiCalzi M, Viggiano V, Barbui T, Rambaldi A and Garattini E . (1997). Blood, 89, 1001–1012.

  • Guzhova I, Hultquist A, Cetinkaya C, Nilsson K, Pahlman S and Larsson LG . (2001). Int. J. Cancer, 94, 97–108.

  • Hara I, Taguchi I, Miyake H, Hara S, Gotoh A and Kamidono S . (2001). Int. J. Oncol., 19, 959–962.

  • Ho CK . (1985). Cancer Res., 45, 5348–5351.

  • Hollingsworth MA and Swanson BJ . (2004). Nat. Rev. Cancer, 4, 45–60.

  • Hu W, Verschraegen CF, Wu WG, Nash M, Freedman RS, Kudelka A and Kavanagh JJ . (2002). Int. J. Gynecol. Cancer, 12, 202–207.

  • Jemal A, Murray T, Samuels A, Ghafoor A, Ward E and Thun MJ . (2003). CA Cancer J. Clin., 53, 5–26.

  • Jesnowski R, Backhaus C, Ringel J and Lohr M . (2002). Pancreatology, 2, 421–424.

  • Kolla V, Lindner DJ, Xiao W, Borden EC and Kalvakolanu DV . (1996). J. Biol. Chem., 271, 10508–10514.

  • Komatsu M, Tatum L, Altman NH, Carothers Carraway CA and Carraway KL . (2000). Int. J. Cancer, 87, 480–486.

  • Komatsu M, Yee L and Carraway KL . (1999). Cancer Res., 59, 2229–2236.

  • Kondo K, Kohno N, Yokoyama A and Hiwada K . (1998). Cancer Res., 58, 2014–2019.

  • Leid M, Kastner P and Chambon P . (1992). Trends Biochem. Sci., 17, 427–433.

  • Matsubara N, Fuchimoto S and Orita K . (1991). Int. J. Pancreatol., 8, 235–243.

  • Moniaux N, Escande F, Porchet N, Aubert JP and Batra SK . (2001). Front. Biosci., 6, D1192–D1206.

  • Moniaux N, Nollet S, Porchet N, Degand P, Laine A and Aubert JP . (1999). Biochem. J., 338, 325–333.

  • Moniaux N, Varshney GC, Chauhan SC, Copin MC, Jain M, Wittel UA, Andrianifahanana M, Aubert JP and Batra SK . (2004). J. Histochem. Cytochem., 52, 253–261.

  • Niitsu N, Higashihara M and Honma Y . (2002). Leuk. Res., 26, 745–755.

  • Park C and Schindler C . (1998). Methods, 15, 175–188.

  • Perrais M, Pigny P, Ducourouble MP, Petitprez D, Porchet N, Aubert JP and Van SI . (2001). J. Biol. Chem., 276, 30923–30933.

  • Ramana CV, Gil MP, Schreiber RD and Stark GR . (2002). Trends Immunol., 23, 96–101.

  • Reber HA . (1998). Pancreatic Cancer: Pathogenesis, Diagnosis, and Treatment. Humana Press: Totowa, NJ.

    Book  Google Scholar 

  • Sheng Z, Wu K, Carraway KL and Fregien N . (1992). J. Biol. Chem., 267, 16341–16346.

  • Singh AP, Moniaux N, Chauhan SC, Meza JL and Batra SK . (2004). Cancer Res., 64, 622–630.

  • Sirivatanauksorn V, Sirivatanauksorn Y and Lemoine NR . (1998). Langenbecks Arch. Surg., 383, 105–115.

  • Soto P, Price-Schiavi SA and Carraway KL . (2003). J. Biol. Chem., 278, 20338–20344.

  • Swartz MJ, Batra SK, Varshney GC, Hollingsworth MA, Yeo CJ, Cameron JL, Wilentz RE, Hruban RH and Argani P . (2002). Am. J. Clin. Pathol., 117, 791–796.

  • Ulloa L, Doody J and Massague J . (1999). Nature, 397, 710–713.

  • van de Wiel-van Kemenade, Ligtenberg MJ, de Boer AJ, Buijs F, Vos HL, Melief CJ, Hilkens J and Figdor CG . (1993). J. Immunol., 151, 767–776.

  • Warshaw AL and Fernandez-del Castillo C . (1992). N. Engl. J. Med., 326, 455–465.

  • Wesseling J, van der Valk SW and Hilkens J . (1996). Mol. Biol. Cell, 7, 565–577.

  • Widschwendter M, Daxenbichler G, Culig Z, Michel S, Zeimet AG, Mortl MG, Widschwendter A and Marth C . (1997). Int. J. Cancer, 71, 497–504.

  • Windbichler GH, Hensler E, Widschwendter M, Posch A, Daxenbichler G, Fritsch E and Marth C . (1996). Gynecol. Oncol., 61, 387–394.

  • Wu K, Fregien N and Carraway KL . (1994). J. Biol. Chem., 269, 11950–11955.

  • Yang JB, Duan ZJ, Yao W, Lee O, Yang L, Yang XY, Sun X, Chang CC, Chang TY and Li BL . (2001). J. Biol. Chem., 276, 20989–20998.

Download references

Acknowledgements

We thank Erik Moore (UNMC) for technical support and the Molecular Biology Core Facility for oligonucleotide synthesis and DNA sequencing. We also thank Dr JK Vishwanatha (UNMC) for the generous gift of anti-PGK antibody. The RARα-specific inhibitor, Ro41-5253, was a generous gift from Hoffman/LaRoche. This work was supported by a grant from the National Institutes of Health (CA 78590) and the Nebraska Department of Health LB506 Program (2002-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder K Batra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianifahanana, M., Agrawal, A., Singh, A. et al. Synergistic induction of the MUC4 mucin gene by interferon-γ and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene 24, 6143–6154 (2005). https://doi.org/10.1038/sj.onc.1208756

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208756

Keywords

This article is cited by

Search

Quick links