Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2

Abstract

Vascular endothelial growth factor (VEGF) induces activation of p38 mitogen-activated protein kinase (MAPK) in primary endothelial cells and may be critical for VEGF-induced angiogenesis. We investigated the molecular basis for p38 activation in response to VEGF. The expression of a C-terminal splice variant of FAK, FRNK, had no affect on VEGF-induced activation of p38; however, expression of a dominant-negative RAFTK/Pyk2 mutant led to a decrease in the activation of p38, but had no affect on extracellular signal-regulated kinase (ERK). Since calcium regulates RAFTK/Pyk2, we investigated its role in p38 activity. Preincubation with EGTA suppressed p38 activation, while calcium ionophore induced p38 activity. Inhibition of phospholipase C (PLC) resulted in complete inhibition of ERK, while having no affect on p38 activity. These data suggested a bifurcation in the regulation of MAPKs that occurs at the level of PLC and RAFTK/Pyk2 activation. Src family kinases interact with RAFTK/Pyk2. Inhibition of Src by either pharmacological or genetic means decreased p38 activity. Finally, we found that both Src and RAFTK/Pyk2 were essential for endothelial cell migration. These data identified a novel regulatory network involving extracellular calcium, RAFTK/Pyk2, Src and p38. This signaling network appears to be critical for VEGF-induced endothelial cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Avraham H, Park SY, Schinkmann K and Avraham S . (2000). Cell Signal., 12, 123–133.

  • Avraham HK, Lee TH, Koh Y, Kim TA, Jiang S, Sussman M, Samarel AM and Avraham S . (2003). J. Biol. Chem., 278, 36661–36668.

  • Bi W, Drake CJ and Schwarz JJ . (1999). Dev. Biol., 211, 255–267.

  • Blanquet PR, Mariani J and Derer P . (2003). Neuroscience, 118, 477–490.

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W and Nagy A . (1996). Nature, 380, 435–439.

  • Carmeliet P and Jain RK . (2000). Nature, 407, 249–257.

  • Criscuolo GR, Lelkes PI, Rotrosen D and Oldfield EH . (1989). J. Neurosurg., 71, 884–891.

  • Davies SP, Reddy H, Caivano M and Cohen P . (2000). Biochem. J., 351, 95–105.

  • Dvorak HF, Brown LF, Detmar M and Dvorak AM . (1995). Am. J. Pathol., 146, 1029–1039.

  • Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J and Cheresh DA . (1999). Mol. Cell, 4, 915–924.

  • Faehling M, Kroll J, Fohr KJ, Fellbrich G, Mayr U, Trischler G and Waltenberger J . (2002). FASEB J., 16, 1805–1807.

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ and Moore MW . (1996). Nature, 380, 439–442.

  • Folkman J . (1995). Nat. Med., 1, 27–31.

  • Fong GH, Rossant J, Gertsenstein M and Breitman ML . (1995). Nature, 376, 66–70.

  • Garnier-Raveaud S, Usson Y, Cand F, Robert-Nicoud M, Verdetti J and Faury G . (2001). Growth Factors, 19, 35–48.

  • Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L and Charron J . (1999). Curr. Biol., 9, 369–372.

  • Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K and Sessa WC . (2001). J. Biol. Chem., 276, 30359–30365.

  • Hanks SK and Polte TR . (1997). BioEssays, 19, 137–145.

  • He H, Venema VJ, Gu X, Venema RC, Marrero MB and Caldwell RB . (1999). J. Biol. Chem., 274, 25130–25135.

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW and Vogelstein B . (1998). Proc. Natl. Acad. Sci. USA, 95, 2509–2514.

  • Hudmon A and Schulman H . (2002). Annu. Rev. Biochem., 71, 473–510.

  • Huser J and Blatter LA . (1997). Am. J. Physiol., 273, C1775–C1782.

  • Huser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S, Sun XM, Brown J, Marais R and Pritchard C . (2001). EMBO J., 20, 1940–1951.

  • Ishii Y, Sakai S and Honma Y . (2001). Leuk. Res., 25, 813–820.

  • Issbrucker K, Marti HH, Hippenstiel S, Springmann G, Voswinckel R, Gaumann A, Breier G, Drexler HC, Suttorp N and Clauss M . (2003). FASEB J., 17, 262–264.

  • Jiang T and Qiu Y . (2003). J. Biol. Chem., 278, 15789–15793.

  • Kalmes A, Deou J, Clowes AW and Daum G . (1999). FEBS Lett., 444, 71–74.

  • Karkkainen MJ and Petrova TV . (2000). Oncogene, 19, 5598–5605.

  • Kawasaki K, Smith Jr RS, Hsieh CM, Sun J, Chao J and Liao JK . (2003). Mol. Cell. Biol., 23, 5726–5737.

  • Keogh RJ, Houliston RA and Wheeler-Jones CP . (2002). Biochem. Biophys. Res. Commun., 294, 1001–1008.

  • Kumar S, Avraham S, Bharti A, Goyal J, Pandey P and Kharbanda S . (1999). J. Biol. Chem., 274, 30657–30663.

  • Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF and Olson BA . (2002). Mol. Pharmacol., 62, 58–64.

  • Lian JP, Huang R, Robinson D and Badwey JA . (1999). J. Immunol., 163, 4527–4536.

  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA and Olson EN . (1998). Development, 125, 4565–4574.

  • Liu F, Verin AD, Wang P, Day R, Wersto RP, Chrest FJ, English DK and Garcia JG . (2001). Am. J. Respir. Cell Mol. Biol., 24, 711–719.

  • McShan GD, Zagozdzon R, Park SY, Zrihan-Licht S, Fu Y, Avraham S and Avraham H . (2002). Int. J. Oncol., 21, 197–205.

  • Meadows KN, Bryant P and Pumiglia K . (2001). J. Biol. Chem., 276, 49289–49298.

  • Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S and Shen MM . (2000). Proc. Natl. Acad. Sci. USA, 97, 10454–10459.

  • Nagashima K, Endo A, Ogita H, Kawana A, Yamagishi A, Kitabatake A, Matsuda M and Mochizuki N . (2002). Mol. Biol. Cell, 13, 4231–4242.

  • Pandey P, Avraham S, Kumar S, Nakazawa A, Place A, Ghanem L, Rana A, Kumar V, Majumder PK, Avraham H, Davis RJ and Kharbanda S . (1999). J. Biol. Chem., 274, 10140–10144.

  • Parsons JT, Martin KH, Slack JK, Taylor JM and Weed SA . (2000). Oncogene, 19, 5606–5613.

  • Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M and Cheresh DA . (2001). Nat. Med., 7, 222–227.

  • Pocock TM and Bates DO . (2001). J. Physiol., 534, 479–488.

  • Pocock TM, Williams B, Curry FE and Bates DO . (2000). Am. J. Physiol. Heart Circ. Physiol., 279, H1625–H1634.

  • Rikitake Y, Kawashima S, Takahashi T, Ueyama T, Ishido S, Inoue N, Hirata K and Yokoyama M . (2001). Am. J. Physiol. Heart Circ. Physiol., 281, H266–H274.

  • Rousseau S, Houle F, Landry J and Huot J . (1997). Oncogene, 15, 2169–2177.

  • Sarkar S, Svoboda M, de Beaumont R and Freedman AS . (2002). Leuk. Lymphoma, 43, 1663–1671.

  • Seymour LW, Shoaibi MA, Martin A, Ahmed A, Elvin P, Kerr DJ and Wakelam MJ . (1996). Lab. Invest., 75, 427–437.

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML and Schuh AC . (1995). Nature, 376, 62–66.

  • Sorokin A, Kozlowski P, Graves L and Philip A . (2001). J. Biol. Chem., 276, 21521–21528.

  • Suarez S and Ballmer-Hofer K . (2001). J. Cell Sci., 114, 1229–1235.

  • Toutenhoofd SL and Strehler EE . (2000). Cell Calcium, 28, 83–96.

  • Widmann C, Gibson S, Jarpe MB and Johnson GL . (1999). Physiol. Rev., 79, 143–180.

  • Wojnowski L, Zimmer AM, Beck TW, Hahn H, Bernal R, Rapp UR and Zimmer A . (1997). Nat. Genet., 16, 293–297.

  • Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, Wang D, Warren RS and Donner DB . (2000). J. Biol. Chem., 275, 5096–5103.

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J . (2000). Nature, 407, 242–248.

  • Yang J, Boerm M, McCarty M, Bucana C, Fidler IJ, Zhuang Y and Su B . (2000). Nat. Genet., 24, 309–313.

  • Zahalka MA, Barak V, Traub L and Moroz C . (2003). FASEB J., 17, 955–957.

  • Zheng C, Xing Z, Bian ZC, Guo C, Akbay A, Warner L and Guan JL . (1998). J. Biol. Chem., 273, 2384–2389.

Download references

Acknowledgements

We thank Drs Allen Hall, Gary Bokoch, Roger Davis and Hava Avraham for providing cDNAs. We also thank Drs Michael Dipersio, Peter Vincent and Allison Berrier for critical reading of the manuscript. In addition, we acknowledge the support of Developmental Therapeutics Program of the National Cancer Institute for providing VEGF and endothelial cells. This work was supported by Public Health Service Grants R01-CA-81419 from the National Cancer Institute (KP) and an institutional predoctoral training grant (T32-HL-07194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Pumiglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMullen, M., Keller, R., Sussman, M. et al. Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 23, 1275–1282 (2004). https://doi.org/10.1038/sj.onc.1207243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207243

Keywords

This article is cited by

Search

Quick links