Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1

Abstract

The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro. Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bakkenist CJ and Kastan MB . (2003). Nature, 421, 499–506.

  • Beamish H, Williams R, Chen P and Lavin MF . (1996). J. Biol. Chem., 271, 20486–20493.

  • Boddy MN, Furnari B, Mondesert O and Russell P . (1998). Science, 280, 909–912.

  • Brondello JM, Boddy MN, Furnari B and Russell P . (1999). Mol. Cell. Biol., 19, 4262–4269.

  • Brummelkamp TR, Bernards R and Agami R . (2002). Science, 296, 550–553.

  • Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L and Delia D . (2001). Mol. Cell. Biol., 21, 5214–5222.

  • Canman CE . (2001). Curr. Biol., 11, R121–124.

  • Cliby WA, Roberts CJ, Cimprich KA, Stringer CM, Lamb JR, Schreiber SL and Friend SH . (1998). EMBO J., 17, 159–169.

  • Falck J, Mailand N, Syljuasen RG, Bartek J and Lukas J . (2001). Nature, 410, 842–847.

  • Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM and Smythe C . (2001). J. Cell. Biol., 154, 913–923.

  • Frangioni JV and Neel BG . (1993). Anal. Biochem., 210, 179–187.

  • Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B and Khanna KK . (2000a). Cancer Res., 60, 3299–3304.

  • Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J and Khanna KK . (2003). J. Biol. Chem.

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P and Khanna K . (2000b). Nat. Genet., 25, 115–119.

  • Gatei M, Zhou BB, Hobson K, Scott S, Young D and Khanna KK . (2001). J. Biol. Chem., 276, 17276–17280.

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM and Piwnica-Worms H . (2000). J. Biol. Chem., 275, 5600–5605.

  • Hekmat-Nejad M, You Z, Yee MC, Newport JW and Cimprich KA . (2000). Curr. Biol., 10, 1565–1573.

  • Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA and Roshak A . (2000). Cancer Res., 60, 566–572.

  • Kaufmann WK . (1995). Cancer Metast. Rev., 14, 31–41.

  • Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP and Lavin MF . (1998). Nat. Genet., 20, 398–400.

  • Khanna KK and Lavin MF . (1993). Oncogene, 8, 3307–3312.

  • Khanna KK, Lavin MF, Jackson SP and Mulhern TD . (2001). Cell Death Differ., 8, 1052–1065.

  • Kim ST, Xu B and Kastan MB . (2002). Genes Dev., 16, 560–570.

  • Li Y, DeFatta R, Anthony C, Sunavala G and De Benedetti A . (2001). Oncogene, 20, 726–738.

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH and Kastan MB . (2000). Nature, 404, 613–617.

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA and Almouzni G . (2002). EMBO Rep., 3, 329–334.

  • Nakanishi K, Taniguchi T, Ranganathan V, New HV, Moreau LA, Stotsky M, Mathew CG, Kastan MB, Weaver DT and D'Andrea AD . (2002). Nat. Cell Biol., 4, 913–920.

  • Nethanel T and Kaufmann G . (1990). J. Virol., 64, 5912–5918.

  • Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP and Dixon K . (2001). Mol. Biol. Cell, 12, 1199–1213.

  • O'Neill T, Giarratani L, Chen P, Iyer L, Lee CH, Bobiak M, Kanai F, Zhou BB, Chung JH and Rathbun GA . (2002). J. Biol. Chem., 277, 16102–16115.

  • Painter RB and Young BR . (1980). Proc. Natl. Acad. Sci. USA, 77, 7315–7317.

  • Roe JL, Rivin CJ, Sessions RA, Feldmann KA and Zambryski PC . (1993). Cell, 75, 939–950.

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D and Lopez BS . (2001). EMBO J., 20, 3861–3870.

  • Schar P . (2001). Cell, 104, 329–332.

  • Shiloh Y and Rotman G . (1996). J Clin Immunol, 16, 254–260.

  • Sillje HH and Nigg EA . (2001). Curr. Biol., 11, 1068–1073.

  • Sillje HH, Takahashi K, Tanaka K, Van Houwe G and Nigg EA . (1999). EMBO J., 18, 5691–5702.

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C and Abraham RT . (1999). Genes Dev., 13, 152–157.

  • Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ and Abraham RT . (2000). Genes Dev., 14, 2989–3002.

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J . (2000). Genes Dev., 14, 927–939.

  • Watters D, Khanna KK, Beamish H, Birrell G, Spring K, Kedar P, Gatei M, Stenzel D, Hobson K, Kozlov S, Zhang N, Farrell A, Ramsay J, Gatti R and Lavin M . (1997). Oncogene, 14, 1911–1921.

  • Xu B, O'Donnell AH, Kim ST and Kastan MB . (2002). Cancer Res., 62, 4588–4591.

  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY and Qin J . (2002). Genes Dev., 16, 571–582.

  • Zdzienicka MZ, Jaspers NG, van der Schans GP, Natarajan AT and Simons JW . (1989). Cancer Res., 49, 1481–1485.

  • Zhao H and Piwnica-Worms H . (2001). Mol. Cell. Biol., 21, 4129–4139.

  • Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, Mishra R, Mattern MR, Winkler JD and Khanna KK . (2000). J. Biol. Chem., 275, 10342–10348.

  • Zhou BB and Elledge SJ . (2000). Nature, 408, 433–439.

  • Zhou XY, Wang X, Hu B, Guan J, Iliakis G and Wang Y . (2002). Cancer Res., 62, 1598–1603.

Download references

Acknowledgements

This work was funded by the Queensland Cancer Fund and the National Health and Medical Research Council of Australia. KKK is supported by the Sylvia and Charles Viertel foundation. We thank Reuven Agami at Netherlands Cancer Institute for providing the pSuper Vector, Jeff Jackson at Glaxo Smith Kline for providing SB218078, Yossi Shiloh for the L3 cell line, Patrick Concannon for the NBS1 and 343A mutant complemented cells and Karen Hobson for tissue culture assistance. We also thank Professor Kay Ellem, Dr Nuri Gueven and Dr Katie Sloper for useful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, D., Jonnalagadda, J., Gatei, M. et al. Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 22, 5927–5937 (2003). https://doi.org/10.1038/sj.onc.1206691

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206691

Keywords

This article is cited by

Search

Quick links