Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors

Abstract

Little is known about the growth-signaling pathways that govern the proliferation of Ewing tumor (ET) cells either in vitro or in vivo. We have studied signal transduction pathways in ET cell lines and compared kinase expression levels and proliferation rates with primary tumors. Cell lines were studied both as conventional adherent monolayers and as anchorage-independent multi-cellular spheroids. Importantly, we observed significant differences between these in vitro models and found that ET spheroids were more closely related to primary tumors with respect to cell morphology, cell–cell junctions, proliferative index and kinase activation. Monolayer ET cells demonstrated serum-dependent phosphorylation of ERK1/2 and AKT and constitutively high serum-independent cyclin D1 protein expression. However, when ET cells were placed in suspension culture, there was immediate serum-independent activation of ERK1/2 and AKT. In addition, cyclin D1 protein expression was completely blocked until stable multi-cellular spheroids had formed, indicating that cell–cell adhesion is necessary for the proliferation of anchorage independent ET cells. This reduction in cyclin D1 expression was post-transcriptional and could be mimicked in monolayer cells by treatment with phosphatidyl inositol-3 kinase (PI3K) inhibitors. Moreover, PI3K inhibition significantly reduced ET cell proliferation and, in primary ET samples, cyclin D1 expression correlated with expression of activated AKT. Thus, the PI3K–AKT pathway appears to be critical for the proliferation of ET cells both in vitro and in vivo and tumor cell growth in vivo may be better represented by the study of anchorage-independent multi-cellular spheroids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  • Assoian RK . 1997 J. Cell Biol. 136: 1–4

  • Baserga R . 1997 Exp. Cell Res. 236: 1–3

  • Bates RC, Edwards NS, Yates JD . 2000 Crit. Rev. Oncol. Hematol. 36: 61–74

  • Connell-Crowley L, Elledge SJ, Harper JW . 1998 Curr. Biol. 8: 65–68

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . 1995 Nature 378: 785–789

  • de Alava E, Panizo A, Antonescu CR, Huvos AG, Pardo-Mindan FJ, Barr FG, Ladanyi M . 2000 Am. J. Pathol. 156: 849–855

  • Delattre O, Zucman J, Ploustagel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, Aurias A, Thomas G . 1992 Nature 359: 162–165

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . 1998 Genes Dev. 12: 3499–3511

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME . 1997 Science 275: 661–665

  • Dunn T, Praissman L, Hagag N, Viola MV . 1994 Cancer Genet. Cytogenet. 76: 19–22

  • Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040

  • Girnita L, Girnita A, Wang M, Meis-Kindblom JM, Kindblom LG, Larsson O . 2000 Oncogene 19: 4298–4301

  • Hanks SK, Polte TR . 1997 Bioessays 19: 137–145

  • Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Arii S, Wada H, Fujimoto J, Kohno M . 1999 Oncogene 18: 813–822

  • Kawamura K, Kobayashi Y, Tanaka T, Ikeda R, Fujikawa-Yamamoto K, Suzuki K . 2000 Anal. Quant. Cytol. Histol. 22: 107–113

  • Kopnin BP . 2000 Biochemistry (Mosc.) 65: 2–27

  • Kovar H, Aryee DN, Jug G, Henockl C, Schemper M, Delattre O, Thomas G, Gadner H . 1996 Cell Growth Differ. 7: 429–437

  • Kulik G, Klippel A, Weber MJ . 1997 Mol. Cell Biol. 17: 1595–1606

  • Lawlor ER, Lim JF, Tao W, Poremba C, Chow CJ, Kalousek IV, Kovar H, MacDonald TJ, Sorensen PHB . 1998 Cancer Research 58: 2469–2476

  • Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . 1995 Mol. Cell Biol. 15: 3654–3663

  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT . 1993 Proc. Natl. Acad. Sci. USA 90: 5752–5756

  • Mellin W, Dierschauer W, Hiddemann W, Roessner A, Edel G, Wuisman P, Harle A, Grundmann E . 1989 Curr. Top Pathol. 80: 115–152

  • Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N . 1998 J. Biol. Chem. 273: 29864–29872

  • Niggli FK, Powell JE, Parkes SE, Ward K, Raafat F, Mann JR, Stevens MC . 1994 Br. J. Cancer 69: 1106–1110

  • Ponten J . 1971 Spontaneous and Virus Induced Transformation in Cell Culture New York: Springer Verlag

    Book  Google Scholar 

  • Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, Tennant RW, Weinberg RA, Yuspa SH, Conti CJ . 1998 Genes Dev. 12: 2469–2474

  • Rodriguez-Puebla ML, Robles AI, Conti CJ . 1999 Mol. Carcinog. 24: 1–6

  • Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ . 1999 Science 286: 1738–1741

  • Roovers K, Assoian RK . 2000 Bioessays 22: 818–826

  • Sambrook J, Fritch EF, Maniatis T . 1989 Molecular cloning: a laboratory manual 2nd edn Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press

  • Santini MT, Rainaldi G . 1999 Pathobiology 67: 148–157

  • Santini MT, Rainaldi G, Indovina PL . 2000 Crit. Rev. Oncol Hematol 36: 75–87

  • Scheid MP, Woodgett JR . 2000 Curr. Biol. 10: R191–R194

  • Scotlandi K, Benini S, Sarti M, Serra M, Lollini P-L, Maurici D, Picci P, Manara MC, Baldini N . 1996 Cancer Res. 56: 4570–4574

  • Scotlandi K, Serra M, Manara MC, Maurici D, Benini S, Nini G, Campanacci M, Baldini N . 1995 Cancer 75: 806–814

  • Shao J, Sheng H, DuBois RN, Beauchamp RD . 2000 J. Biol. Chem. 275: 22916–22924

  • Sherr CJ . 2000 Cancer Res. 60: 3689–3695

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . 2000 Trends Cell Biol. 10: 147–154

  • Silvany RE, Eliazer S, Wolff NC, Ilaria Jr RL . 2000 Oncogene 19: 4523–4530

  • Sorensen PHB, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT . 1994 Nature Genet 6: 146–151

  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y . 1997 J. Clin. Invest. 99: 239–247

  • Tapon N, Hall A . 1997 Curr. Opin Cell Biol. 9: 86–92

  • Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ . 1997 J. Biol. Chem. 272: 30822–30827

  • Toretsky JA, Thakar M, Eskenazi AE, Frantz CN . 1999 Cancer Res. 59: 5745–5750

  • Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ . 1999 Mol. Cell Biol. 19: 321–329

  • Triche TJ . 1993 Principles and Practice of Pediatric Oncology Vol. 2: Pizzo, PA and Poplack DG. (eds) Philadelphia: J.B. Lippincott: pp. 115–152

    Google Scholar 

  • van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM . 1998 J. Biol. Chem. 273: 13150–13156

  • Vollmer E, Roessner A, Wuisman P, Harle A, Grundmann E . 1989 Curr. Top Pathol. 80: 91–114

  • Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC, Israel MA . 1984 N. Engl. J. Med. 311: 584–585

  • Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, Al-Mehdi AB, Bernhard EJ, Muschel RJ . 2001 Cancer Res. 61: 333–338

  • Yee D, Favoni RE, Lebovic GS, Lombana F, Powell D, Reynolds CP, Rosen N . 1990 J. Clin. Invest. 86: 1806–1814

  • Zimmermann S, Moelling K . 1999 Science 286: 1741–1744

  • Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc-Carel C, Ambros P, Combaret V, Lenoir G, Aurias A, Thomas G, Delattre O . 1993 EMBO J. 12: 4481–4487

Download references

Acknowledgements

The authors wish to thank Joan Mathers, Heather Wildgrove, Shelley Moerike, Theresa Sturby and Sharon Middler for technical assistance and Drs Tim Triche and Chris Denny for cells and probes. This work was supported by a post-doctoral fellowship from the Medical Research Council of Canada (ERL) and funds from the Canadian Institutes for Health Research and the National Cancer Institute, Directors Challenge: Towards a molecular classification of tumors (vol-CA88199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poul HB Sorensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawlor, E., Scheel, C., Irving, J. et al. Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 21, 307–318 (2002). https://doi.org/10.1038/sj.onc.1205053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205053

Keywords

This article is cited by

Search

Quick links