Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of STAT5 triggers proliferation and contributes to anti-apoptotic signalling mediated by the oncogenic Xmrk kinase

Abstract

Extensive studies of primary tumors and tumor derived cell lines revealed that inappropriate activation of specific STATs (particularly of STAT3 and STAT5) occurs with high frequency in a wide variety of human cancers. We reported recently that the melanoma inducing EGFR-related receptor Xmrk specifically induces constitutive activation of STAT5 in fish melanoma cells. However, little is known about the role of STAT5 in solid tumours in general and its function in melanoma in particular. Recent examinations suggest that activated STAT signalling participates in oncogenesis by stimulating cell proliferation and preventing apoptosis. As an initial approach to understanding the consequences of Xmrk induced STAT5 signalling we used the well characterized pro B-cell line Ba/F3 as a sensitive system to analyse mitogenic as well as anti-apoptotic signalling. We identified STAT5 activation as being involved in both growth and survival signalling triggered by the Xmrk kinase possibly due to STAT5 induced expression of pim-1 and bcl-x. We also found a new mechanism of activation of STAT5 by receptor tyrosine kinases, whereby direct interaction of the receptor kinase domain with the STAT protein in a phosphotyrosine independent way led to activation of STAT5 in terms of DNA binding and target gene expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Baudler M, Schartl M, Altschmied J . 1999 Exp. Cell. Res. 249: 212–220

  • Bowman T, Garcia R, Turkson J, Jove R . 2000 Oncogene 19: 2474–2488

  • Coffer PJ, Kruijer W . 1995 Biochem. Biophys. Res. Commun. 210: 74–81

  • Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, Cutler RL, Krystal G . 1995 EMBO J. 14: 5557–5568

  • David M, Wong L, Flavell R, Thompson SA, Wells A, Larner AC, Johnson GR . 1996 J. Biol. Chem. 271: 9185–9188

  • DiGiovanna MP, Lerman MA, Coffey RJ, Muller WJ, Cardiff RD, Stern DF . 1998 Oncogene 17: 1877–1884

  • Dotto GP, Moellmann G, Ghosh S, Edwards M, Halaban R . 1989 J. Cell. Biol. 109: 3115–3128

  • Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, Mollat P, Gisselbrecht S, Gouilleux F . 1999 Oncogene 18: 4191–4199

  • Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A . 1990 Cancer. Res. 50: 1550–1558

  • Fujitani Y, Hibi M, Fukada T, Takahashi-Tezuka M, Yoshida H, Yamaguchi T, Sugiyama K, Yamanaka Y, Nakajima K, Hirano T . 1997 Oncogene 14: 751–761

  • Jaster R, Tschirch E, Bittorf T, Brock J . 1999 Cell. Signal. 11: 769–775

  • Kinoshita T, Shirouzu M, Kamiya A, Hashimoto K, Yokoyama S, Miyajima A . 1997 Oncogene 15: 619–627

  • Kinoshita T, Yokota T, Arai K, Miyajima A . 1995 EMBO J. 14: 266–275

  • Kokai Y, Myers JN, Wada T, Brown VI, LeVea CM, Davis JG, Dobashi K, Greene MI . 1989 Cell 58: 287–292

  • Lax I, Bellot F, Howk R, Ullrich A, Givol D, Schlessinger J . 1989 EMBO J. 8: 421–427

  • Lazar-Molnar E, Hegyesi H, Toth S, Falus A . 2000 Cytokine 12: 547–554

  • Leverrier Y, Thomas J, Perkins GR, Mangeney M, Collins MK, Marvel J . 1997 Oncogene 14: 425–430

  • Lischke A, Pagany M, Kammer W, Friedrich K . 1996 Anal. Biochem. 236: 322–326

  • Mayr S, Welte T, Windegger M, Lechner J, May P, Heinrich PC, Horn F, Doppler W . 1998 Eur. J. Biochem. 258: 784–793

  • Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . 1999 EMBO J. 18: 4754–4765

  • O'Rourke DM, Qian X, Zhang HT, Davis JG, Nute E, Meinkoth J, Greene MI . 1997 Proc. Natl. Acad. Sci. USA. 94: 3250–3255

  • Palacios R, Steinmetz M . 1985 Cell 41: 727–734

  • Pallard C, Gouilleux F, Charon M, Groner B, Gisselbrecht S, Dusanter-Fourt I . 1995 J. Biol. Chem. 270: 15942–15945

  • Paukku K, Valgeirsdottir S, Saharinen P, Bergman M, Heldin CH, Silvennoinen O . 2000 Biochem. J. 345: 759–766

  • Peris K, Cerroni L, Chimenti S, Soyer HP, Kerl H, Hofler H . 1991 Arch. Dermatol. Res. 283: 500–505

  • Riese DJ, Bermingham Y, van Raaij TM, Buckley S, Plowman GD, Stern DF . 1996a Oncogene 12: 345–353

  • Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD, Stern DF . 1996b J. Biol. Chem. 271: 20047–20052

  • Riese DJ, van Raaij TM, Plowman GD, Andrews GC, Stern DF . 1995 Mol. Cell. Biol. 15: 5770–5776

  • Rodeck U, Melber K, Kath R, Menssen HD, Varello M, Atkinson B, Herlyn M . 1991 J. Invest. Dermatol. 97: 20–26

  • Rosa Santos SC, Dumon S, Mayeux P, Gisselbrecht S, Gouilleux F . 2000 Oncogene 19: 1164–1172

  • Saharinen P, Takaluoma K, Silvennoinen O . 2000 Mol. Cell. Biol. 20: 3387–3395

  • Shibuya H, Yoneyama M, Ninomiya-Tsuji J, Matsumoto K, Taniguchi T . 1992 Cell 70: 57–67

  • Vignais ML, Sadowski HB, Watling D, Rogers NC, Gilman M . 1996 Mol. Cell. Biol. 16: 1759–1769

  • von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR, Troppmair J . 2001 Mol. Cell. Biol. 21: 2324–2336

  • Wellbrock C, Geissinger E, Gomez A, Fischer P, Friedrich K, Schartl M . 1998 Oncogene 16: 3047–3056

  • Wellbrock C, Schartl M . 1999 Eur. J. Biochem. 260: 275–283

  • Wellbrock C, Schartl M . 2000 Eur. J. Biochem. 267: 3513–3522

  • Winkler C, Wittbrodt J, Lammers R, Ullrich A, Schartl M . 1994 Oncogene 9: 1517–1525

  • Wittbrodt J, Adam D, Malitschek B, Maueler W, Raulf F, Telling A, Robertson SM, Schartl M . 1989 Nature 341: 415–421

  • Wittbrodt J, Lammers R, Malitschek B, Ullrich A, Schartl M . 1992 EMBO J 11: 4239–4246

  • Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, Yoshinaga SK . 1996 J Biol Chem 271: 3884–3890

  • Zhong Z, Wen Z, Darnell JE . 1994 Science 264: 95–98

Download references

Acknowledgements

We thank Petra Fisher for excellent technical assistance, Jakob Troppmair for the BaF3-ΔStuI-LIDEMANE cells, Fabrice Gouilleux for the bcl-x plasmid, and the Resource Centre of the German Human Genome Project for the c-myc EST/IMAGE clone. This work was supported by grants to M Schartl supplied by the European Union (EU), grant no. FAIR PL 95-666 and the Deutsche Forschungsgemeinschaft through the SFB 487 (‘Regulatorische Membranproteine’) and the SFB 465 (‘Entwicklung und Manipulation pluripotenter Zellen’). E Geissinger was supported by a fellowship of the Graduiertenkolleg ‘Regulation des Zellwachstums’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Wellbrock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morcinek, J., Weisser, C., Geissinger, E. et al. Activation of STAT5 triggers proliferation and contributes to anti-apoptotic signalling mediated by the oncogenic Xmrk kinase. Oncogene 21, 1668–1678 (2002). https://doi.org/10.1038/sj.onc.1205148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205148

Keywords

This article is cited by

Search

Quick links