Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Insulin-like growth factor I stimulates motility in human neuroblastoma cells

Abstract

Motility is an important process that contributes to cancer cell spread. Growth factors are key regulators of motility in many cell types. Insulin-like growth factor I (IGF-I) causes SH-SY5Y human neuroblastoma cells to undergo dynamic morphological changes, leading to the extension of lamellipodia. IGF-I stimulated lamellipodia extension requires signaling through both phosphatidylinositol 3-kinase (PI3-K) and MAP kinase pathways. IGF-I, over a period of hours, stimulates SH-SY5Y and SHEP neuroblastoma cells to become more motile. While SH-SY5Y and SHEP cells use different insulin receptor substrate (IRS) isoforms to transduce signals from the IGF-I receptor, IGF-I has the same relative effect on the motility of both cell lines. Blocking the PI3-K and MAP kinase pathways attenuates the ability of IGF-I to increase motility. Overexpression of PTEN also attenuates IGF-I mediated motility. These results delineate some of the proximal events in the signaling mechanism utilized by IGF-I to stimulate cell motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Albrecht-Buehler G . 1977 Cell 11: 395–404

  • Biedler JL, Spengler BA, Tien-ding C, Ross RA . 1988 Adv. Neuroblastoma Res. 2: 265–276

  • Cheng H-L, Steinway M, Russell JW, Feldman EL . 2000 J. Biol. Chem. 275: 27197–27204

  • Fagerström S, PÃ¥hlman S, Gestblom C, NÃ¥nberg E . 1996 Cell. Growth Differ. 7: 775–785

  • Hall A . 1998 Science 279: 509–514

  • Hawkins PT, Eguinoa A, Qui RG, Stokoe D, Cooke FT, Wakter R, Wennstrom S, Claesson WL, Evans T, Symons M, Stephens L . 1995 Curr. Biol. 5: 393–403

  • Hooshmand-Rad R, Claesson-Welsh L, Wennström S, Yokote K, Siegbahn A, Heldin C-H . 1997 Exp. Cell. Res. 234: 434–441

  • Imai Y, Clemmons DR . 1999 Endocrinology 140: 4228–4235

  • Jackson JG, Yoneda T, Yee D . 1999 Program & Abstracts. The Endocrine Society's 81st Annual Meeting p. 479

  • Keller HU . 2000 Cell. Motil. Cytoskeleton 46: 247–256

  • Kim B, Cheng H-L, Margolis B, Feldman EL . 1998a J. Biol. Chem. 273: 34543–34550

  • Kim B, Feldman EL . 1998 J. Neurochem. 71: 1333–1336

  • Kim B, Leventhal PS, Saltiel AR, Feldman EL . 1997 J. Biol. Chem. 272: 21268–21273

  • Kim B, Leventhal PS, White MF, Feldman EL . 1998b Endocrinology 139: 4881–4889

  • Kotani K, Hara K, Yoneawa K, Kasuga K . 1995 Biochem. Biophys. Res. Commun. 208: 985–990

  • Lauffenberger DA, Horwitz AF . 1996 Cell 84: 359–369

  • Leventhal PS, Feldman EL . 1997 Trends Endocrinol. Metab. 8: 1–6

  • Leventhal PS, Shelden EA, Kim B, Feldman EL . 1997 J. Biol. Chem. 272: 5214–5218

  • Ma AD, Metjian A, Bagrodia S, Taylor S, Abrams CS . 1998 Mol. Cell. Biol. 18: 4744–4751

  • Maehama T, Dixon JE . 1998 J. Biol. Chem. 273: 13375–13378

  • Mira E, Manes S, Lacalle RA, Marquez G, Martinez-A C . 1999 Endocrinology 140: 1657–1664

  • Missy K, Van Poucke V, Raynal P, Viala C, Mauco G, Plantavid M, Chap H, Payrastre B . 1998 J. Biol. Chem. 273: 30279–30286

  • Mitchison TJ, Cramer LP . 1996 Cell 84: 371–379

  • Mohan S, Baylink DJ . 1991 Clin. Orthop. 263: 30–48

  • Myers Jr MG, Sun XJ, White MF . 1994 Trends Biochem. Sci. 19: 289–293

  • Myers Jr MG, White MF . 1996 Annu. Rev. Pharmacol. Toxicol. 36: 615–658

  • Panagakos FS . 1993 Biochimie 75: 991–994

  • Shelden EA, Feldman EL . 2000 J. Neurosci. Methods 102: 143–154

  • Singleton JR, Randolph AE, Feldman EL . 1996 Cancer Res. 56: 4522–4529

  • Sumantran VN, Feldman EL . 1993 Endocrinology 132: 2017–2023

  • Tanabe M, Ohnuma N, Iwai J, Yoshida H, Takahashi H, Maie M, Etoh T, Kawamura K . 1995 Med. Pediatr. Oncol. 24: 292–299

  • van Golen CM, Feldman EL . 2000 J. Cell. Physiol. 182: 24–32

  • van Golen CM, Schwab TS, Woods Ignatoski KM, Ethier SP, Feldman EL . 2001 Cell Growth Differ. 12: 371–378

  • White MF . 1998 Mol. Cell. Biochem. 182: 3–11

  • Woodhouse EC, Chuaqui RF, Liotta LA . 1997 Cancer 80: 1529–1537

  • Yamamoto M, Sobue G, Li M, Arakawa Y, Mitsuma T, Kimata K . 1993 Neurosci. Lett. 152: 37–40

  • Zeigler ME, Chi Y, Schmidt T, Varani J . 1999 J. Cell. Physiol. 180: 271–284

  • Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH . 2000 J. Biol. Chem. 275: 15099–15105

Download references

Acknowledgements

The authors acknowledge Yutein Chung for technical assistance, Kathleen Ignatowski and Cynthia van Golen for preparation of the SHEP-PTEN transfectants, and Judith Boldt for secretarial assistance. This work was supported by NIH RO1 NS38849 (EL Feldman) and 5T32 GM07863 and 5T32 CA09676 (GE Meyer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G., Shelden, E., Kim, B. et al. Insulin-like growth factor I stimulates motility in human neuroblastoma cells. Oncogene 20, 7542–7550 (2001). https://doi.org/10.1038/sj.onc.1204927

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204927

Keywords

This article is cited by

Search

Quick links