Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator

Abstract

Bcl-2 family protein including anti-apoptotic (Bcl-2) or pro-apoptotic (Bax) members can form ion channels when incorporated into synthetic lipid bilayers. This contrasts with the observation that Bcl-2 stabilizes the mitochondrial membrane barrier function and inhibits the permeability transition pore complex (PTPC). Here we provide experimental data which may explain this apparent paradox. Bax and adenine nucleotide translocator (ANT), the most abundant inner mitochondrial membrane protein, can interact in artificial lipid bilayers to yield an efficient composite channel whose electrophysiological properties differ quantitatively and qualitatively from the channels formed by Bax or ANT alone. The formation of this composite channel can be observed in conditions in which Bax protein alone has no detectable channel activity. Cooperative channel formation by Bax and ANT is stimulated by the ANT ligand atractyloside (Atr) but inhibited by ATP, indicating that it depends on the conformation of ANT. In contrast to the combination of Bax and ANT, ANT does not form active channels when incorporated into membranes with Bcl-2. Rather, ANT and Bcl-2 exhibit mutual inhibition of channel formation. Bcl-2 prevents channel formation by Atr-treated ANT and neutralizes the cooperation between Bax and ANT. Our data are compatible with a ménage à trois model of mitochondrial apoptosis regulation in which ANT, the likely pore forming protein within the PTPC, interacts with Bax or Bcl-2 which influence its pore forming potential in opposing manners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocator

Atr:

atractyloside

ΔΨm:

mitochondrial transmembrane potential

PT:

permeability transition

PTPC:

permeability transition pore complex

References

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi M, Bernard A, Mermod J-J, Mazzei G, Maundrell K, Gambale F, Sadoui R and Martinou J-C. . 1997 Science 277: 370–376.

  • Brullemans M, Helluin O, Dugast J-Y, Molle G and Duclohier H. . 1994 Eur. Biophys. J. 23: 39–49.

  • Brustovetsky N and Klingenberg M. . 1996 Biochemistry 35: 8483–8488.

  • Crompton M, Virji S and Ward JM. . 1998 Eur. J. Biochem. 258: 729–735.

  • Giron-Calle J and Schmid HH. . 1996 Biochemistry 35: 15440–15446.

  • Green DR and Reed JC. . 1998 Science 281: 1309–1312.

  • Hanke W, Methfessel C, Wilmsen U and Boheim G. . 1984 Bioelectrochem. Bioenerg. 12: 329–339.

  • Hille B. . 1984 Selective permeability versus independence. In: Ionic channels of excitable membranes. Sinauer Associates Inc., Sauerland, MA pp. 226–248.

    Google Scholar 

  • Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D and Reed JC. . 1998 Proc. Natl. Acad. Sci. USA 95: 4997–5002.

  • Knudson CM and Korsmeyer SJ. . 1997 Nat. Gen. 16: 358–363.

  • Krajewski S, Krajeswka M, Shabaik A, Miyashita T, Wang HG and Reed JC. . 1994 Am. J. Pathol. 145: 1323–1336.

  • Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W and Reed JC. . 1993 Cancer Res. 53: 4701–4714.

  • Kroemer G. . 1997 Nature Medicine 3: 614–620.

  • Kroemer G, Dallaporta B and Resche-Rigon M. . 1998 Annu. Rev. Physiol. 60: 619–642.

  • Liu XS, Kim CN, Yang J, Jemmerson R and Wang X. . 1996 Cell 86: 147–157.

  • Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA and Rosen A. . 1998 J. Cell Biol. 140: 1485–1495.

  • Marzo I, Brenner C, Zamzami N, Jürgensmeier J, Susin SA, Vieira HLA, Prévost M-C, Xie Z, Mutsiyama S, Reed JC and Kroemer G. . 1998a Science 281: 2027–2031.

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Rémy R, Xie Z-H, Reed JC and Kroemer G. . 1998b J. Exp. Med. 187: 1261–1271.

  • Matsuyama S, Schendel SL, Xie Z and Reed JC. . 1998 J. Biol. Chem. 273: 30995–31001.

  • Minn AJ, Vélez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M and Thompson CB. . 1997 Nature 385: 353–357.

  • Montal M and Mueller P. . 1972 Proc. Natl. Acad. Sci. USA 69: 3561–3566.

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H and Tsujimoto Y. . 1998 Proc. Natl. Acad. Sci. USA 95: 14681–14686.

  • Nicolli A, Basso E, Petronilli V, Wenger RM and Bernardi P. . 1996 J. Biol. Chem. 271: 2185–2192.

  • Oltvai ZN and Korsmeyer SJ. . 1994 Cell 79: 189–192.

  • Oltvai, ZN, Milliman CL and Korsmeyer SJ. . 1993 Cell 74: 609–619.

  • Rück A, Dolder M, Wallimann T and Brdiczka D. . 1998 FEBS Lett. 426: 97–101.

  • Schendel S, Montal M and Reed JC. . 1998 Cell Death Differ. 5: 372–380.

  • Schendel S, Xie Z, Montal MO, Matsuyama S, Montal M and Reed JC. . 1997 Proc. Natl. Acad. Sci. USA 94: 5113–5118.

  • Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G and Korsmeyer SJ. . 1997 Proc. Natl. Acad. Sci. USA 94: 11357–11362.

  • Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H and Tsujimoto Y. . 1998 Proc. Natl. Acad. Sci. USA 95: 1455–1459.

  • Susin SA, Larochette N, Geuskens M and Kroemer G. . 1999a Meth. Enzymol. in press.

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Larochette N, Alzari PM and Kroemer G. . 1999b J. Exp. Med. 189: 381–394.

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G. . 1999c Nature 397: 441–446.

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M and Kroemer G. . 1996 J. Exp. Med. 184: 1331–1342.

  • vander Heiden MG, Chandal NS, Williamson EK, Schumacker PT and Thompson CB. . 1997 Cell 91: 627–637.

  • Woodfield K, Ruck A, Brdiczka D and Halestrap AP. . 1998 Biochem. J. 336: 287–290.

  • Xie ZH, Schendel S, Matsuyama S and Reed JC. . 1998 Biochemistry 37: 6410–6418.

  • Ying XM, Oltvai ZN and Korsmeyer SJ. . 1994 Nature 369: 321–323.

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M and Kroemer G. . 1996 J. Exp. Med. 183: 1533–1544.

  • Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B and Andrews DW. . 1996 EMBO J. 15: 4130–4141.

Download references

Acknowledgements

We are indebted to Dr Pat Schmid (The Hormel Institute, University of Minnesota, USA) and Professor Paolo Bernardi (University of Padova, Padova, Italy) for antisera. This work has been supported by grants from ANRS, ARC, FRM, INSERM, LNC, and the French Ministry for Science (to G Kroemer), GDR no. 790 (to H Duclohier), NIH grant AG 15393 (to JC Reed) and Région Haute Normandie (Ph.D. grant to H Cadiou). HLA Vieira receives a fellowship from the Fundação para a Ciência e a Tecnolgia PRAXIS XXI, Portugal.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, C., Cadiou, H., Vieira, H. et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329–336 (2000). https://doi.org/10.1038/sj.onc.1203298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203298

Keywords

This article is cited by

Search

Quick links