Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Characterization of the human and mouse ETV1/ER81 transcription factor genes: role of the two alternatively spliced isoforms in the human

Abstract

The Ets transcription factors of the PEA3 group – E1AF/PEA3, ETV1/ER81 and ERM – are almost identical in the ETS DNA-binding and the transcriptional acidic domains. To accelerate our understanding of the molecular basis of putative diseases linked to ETV1 such as Ewing's sarcoma we characterized the human ETV1 and the mouse ER81 genes. We showed that these genes are both encoded by 13 exons in more than 90 kbp genomic DNA, and that the classical acceptor and donor splicing sites are present in each junction except for the 5′ donor site of intron 9 where GT is replaced by TT. The genomic organization of the ETS and acidic domains in the human ETV1 and mouse ER81 (localized to chromosome 12) genes is similar to that observed in human ERM and human E1AF/PEA3 genes. Moreover, as in human ERM and human E1AF/PEA3 genes, a first untranslated exon is upstream from the first methionine, and the mouse ER81 gene transcription is regulated by a 1.8 kbp of genomic DNA upstream from this exon. In human, the alternative splicing of the ETV1 gene leads to the presence (ETV1α) or the absence (ETV1β) of exon 5 encoding the C-terminal part of the transcriptional acidic domain, but without affecting the alpha helix previously described as crucial for transactivation. We demonstrated here that the truncated isoform (human ETV1β) and the full-length isoform (human ETV1α) bind similarly specific DNA Ets binding sites. Moreover, they both activate transcription similarly through the PKA-transduction pathway, so suggesting that this alternative splicing is not crucial for the function of this protein as a transcription factor. The comparison of human ETV1α and human ETV1β expression in the same tissues, such as the adrenal gland or the bladder, showed no clear-cut differences. Altogether, these data open a new avenue of investigation leading to a better understanding of the functional role of this transcription factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baens M, Peeters P, Guo C, Aerssens J and Marynen P. . 1996 Genome Res. 6: 404–413.

  • Baert J-L, Monte D, Musgrove EA, Albagli O, Sutherland RL and de Launoit Y. . 1997 Int. J. Cancer 70: 590–597.

  • Ben David Y, Giddens EB, Letwin K and Bernstein A. . 1991 Genes Dev. 5: 908–918.

  • Brown LA, Amores A, Schilling TF, Jowett T, Baert J-L, Ingham PW, de Launoit Y and Sharrocks AD. . 1998 Oncogene 17: 93–104.

  • Brown TA and McKnight SL. . 1992 Genes Dev. 6: 2502–2512.

  • Candia AF, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH and Wright CV. . 1992 Development 116: 1123–1136.

  • Chotteau-Lelièvre A, Desbiens X, Pelczar H, Defossez P-A and de Launoit Y. . 1997 Oncogene 15: 937–952.

  • de Launoit Y, Audette M, Pelczar H, Plaza S and Baert J-L. . 1998 Oncogene 16: 2065–2073.

  • de Launoit Y, Baert JL, Chotteau A, Monte D, Defossez PA, Coutte L, Pelczar H and Leenders F. . 1997 Biochem. Mol. Med. 61: 127–135.

  • Defossez PA, Baert JL, Monnot M and de Launoit Y. . 1997 Nucleic Acids Res. 25: 4455–4463.

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, De Jong P, Rouleau G, et al. 1992 Nature 359: 162–165.

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J and Weissenbach J. . 1996 Nature 380: 152–154.

  • Friedman LS, Ostermeyer EA, Lynch ED, Szabo CI, Anderson LA, Dowd P, Lee MK, Rowell SE, Boyd J and King MC. . 1994 Cancer Res. 54: 6374–6382.

  • Golub T, Barker GF, Lovett M and Gilliland DG. . 1994 Cell 77: 307–316.

  • Gorski DH, LePage DF, Patel CV, Copeland NG, Jenkins NA and Walsh K. . 1993 Mol. Cell. Biol. 13: 3722–3733.

  • Higashino F, Yoshida K, Kamio K and Fujinaga K. . 1993 Nucl. Acid Res. 21: 547–553.

  • Higashino F, Yoshida K, Noumi T, Seiki M and Fujinaga K. . 1995 Oncogene 10: 1461–1463.

  • Janknecht R. . 1996 Mol. Cell. Biol. 16: 1551–1556.

  • Janknecht R, Monte D, Baert J-L and de Launoit Y. . 1996 Oncogene 13: 1745–1754.

  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT and Shapiro DN. . 1995 Oncogene 10: 1229–1234.

  • Jeon IS and Shapiro DN. . 1998 J. Korean Med. Sci. 13: 355–360.

  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F and Fujinaga K. . 1996 Genes Chromosomes Cancer 15: 115–121.

  • Karim FD, Urness LD, Thummel CS, Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA, Gunther CV, Nye JA et al. 1990 Genes Dev. 4: 1451–1453.

  • Kaya M, Yoshida K, Higashino F, Mitaka T, Ishii S and Fujinaga K. . 1996 Oncogene 12: 221–227.

  • Laget MP, Defossez P-A, Albagli O, Baert JL, Dewitte F, Stehelin D and de Launoit Y. . 1996 Oncogene 12: 1325–1336.

  • Lazar V, Diez SG, Laurent A, Giovangrandi Y, Radvanyi F, Chopin D, Bidart JM, Bellet D and Vidaud M. . 1995 Cancer Res. 55: 3735–3738.

  • Liu D, Pavlopoulos E, Modi W, Moschonas N and Mavrothalassitis G. . 1997 Oncogene 14: 1445–1451.

  • Lunetta KL, Boehnke M, Lange K and Cox DR . 1996 Am. J. Hum. Genet. 59: 717–725.

  • Monté D, Baert JL, Defossez PA, de Launoit Y and Stéhelin D. . 1994 Oncogene 9: 1397–1406.

  • Monté D, Coutte L, Baert JL, Angeli I, Stéhelin D and de Launoit Y. . 1995 Oncogene 11: 771–780.

  • Monté D, Coutte L, Dewitte F, Defossez PA, Le Coniat M, Stehelin D, Berger R and de Launoit Y. . 1996 Genomics 35: 236–240.

  • Monté D, Coutte L, Baert L and de Launoit Y. . (submitted).

  • Moreau-Gachelin F, Tavitian A and Tambourin P. . 1988 Nature 331: 277–280.

  • Nakae K, Nakajima K, Inazawa J, Kitaoka T and Hirano T. . 1995 J. Biol. Chem. 270: 23795–23800.

  • Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H and Delattre O. . 1997 Oncogene 14: 1159–1164.

  • Sharrocks AD, Brown AL, Ling Y and Yates PR. . 1997 Int. J. Biochem. Cell. Biol. 29: 1371–1387.

  • Shimizu K, Ichikawa H, Tojo A, Kaneko Y, Maseki N, Hayashi Y, Ohira M, Asano S and Ohki M. . 1993 Proc. Natl. Acad. Sci. USA 90: 10280–10284.

  • Trimble MS, Xin JH, Guy CT, Muller WJ and Hassell JA. . 1993 Oncogene 8: 3037–3042.

  • Xin JH, Cowie A, Lachance P and Hassell JA. . 1992 Genes Dev. 6: 481–496.

  • Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc-Carel C, Ambros P, Combaret V, Lenoir G, Aurias A, Thomas G and Delattre O. . 1993 EMBO J. 12: 4481–4487.

Download references

Acknowledgements

This work has been carried out on the basis of grants awarded by the `Centre National de la Recherche Scientifique' (France), the `Institut Pasteur de Lille', the `Association pour la Recherche contre le Cancer' (France) and by the `Fonds National de la Recherche Scientifique' (Belgium).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutte, L., Monté, D., Imai, K. et al. Characterization of the human and mouse ETV1/ER81 transcription factor genes: role of the two alternatively spliced isoforms in the human. Oncogene 18, 6278–6286 (1999). https://doi.org/10.1038/sj.onc.1203020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203020

Keywords

This article is cited by

Search

Quick links