Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains

Abstract

Nonribosomal peptide synthetases (NRPSs) are large, multidomain enzymes that biosynthesize medically important natural products. We report the crystal structure of the free-standing NRPS condensation (C) domain VibH, which catalyzes amide bond formation in the synthesis of vibriobactin, a Vibrio cholerae siderophore. Despite low sequence identity, NRPS condensation enzymes are structurally related to chloramphenicol acetyltransferase (CAT) and dihydrolipoamide acyltransferases. However, although the latter enzymes are homotrimers, VibH is a monomeric pseudodimer. The VibH structure is representative of both NRPS condensation and epimerization domains, as well as the condensation-variant cyclization domains, which are all expected to be monomers. Surprisingly, despite favorable positioning in the active site, a universally conserved histidine important in CAT and in other C domains is not critical for general base catalysis in VibH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NRPS condensation domains, their activity and their sequences.
Figure 2: Structure of the VibH monomer and comparison to the CAT trimer.
Figure 3: The active site of VibH and models of substrate binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. Chem. Rev. 97, 2651–2673 (1997).

    Article  CAS  Google Scholar 

  2. Stachelhaus, T. & Walsh, C.T. Biochemistry 39, 5775–5787 (2000).

    Article  CAS  Google Scholar 

  3. Marshall, C.G., Hillson, N.J. & Walsh, C.T. Biochemistry 41, 244–250 (2002).

    Article  CAS  Google Scholar 

  4. Keating, T.A., Miller, D.A. & Walsh, C.T. Biochemistry 39, 4729–4739 (2000).

    Article  CAS  Google Scholar 

  5. Tsai, S.C. et al. Proc. Natl. Acad. Sci. USA 98, 14808–14813 (2001).

    Article  CAS  Google Scholar 

  6. Weber, T., Baumgartner, R., Renner, C., Marahiel, M.A. & Holak, T.A. Structure Fold. Des. 8, 407–418 (2000).

    Article  CAS  Google Scholar 

  7. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. EMBO J. 16, 4174–4183 (1997).

    Article  CAS  Google Scholar 

  8. Bruner, S.D. et al. Structure 10, 301–310 (2002).

    Article  CAS  Google Scholar 

  9. De Crécy-Lagard, V., Marlière, P. & Saurin, W. C. R. Acad. Sci. III 318, 927–936 (1995).

    PubMed  Google Scholar 

  10. Lewendon, A., Murray, I.A., Shaw, W.V., Gibbs, M.R. & Leslie, A.G. Biochemistry 33, 1944–1950 (1994).

    Article  CAS  Google Scholar 

  11. Stachelhaus, T., Mootz, H.D., Bergendahl, V. & Marahiel, M.A. J. Biol. Chem. 273, 22773–22781 (1998).

    Article  CAS  Google Scholar 

  12. Bergendahl, V., Linne, U. & Marahiel, M.A. Eur. J. Biochem. 269, 620–629 (2002).

    Article  CAS  Google Scholar 

  13. Keating, T.A., Marshall, C.G. & Walsh, C.T. Biochemistry 39, 15513–15521 (2000).

    Article  CAS  Google Scholar 

  14. Keating, T.A., Marshall, C.G. & Walsh, C.T. Biochemistry 39, 15522–15530 (2000).

    Article  CAS  Google Scholar 

  15. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  16. Holm, L. & Sander, C. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  17. Leslie, A.G. J. Mol. Biol. 213, 167–186 (1990).

    Article  CAS  Google Scholar 

  18. Leslie, A.G., Moody, P.C. & Shaw, W.V. Proc. Natl. Acad. Sci. USA 85, 4133–4137 (1988).

    Article  CAS  Google Scholar 

  19. Mattevi, A., Obmolova, G., Kalk, K.H., Teplyakov, A. & Hol, W.G. Biochemistry 32, 3887–3901 (1993).

    Article  CAS  Google Scholar 

  20. Mattevi, A. et al. Science 255, 1544–1550 (1992).

    Article  CAS  Google Scholar 

  21. Mattevi, A. et al. J. Mol. Biol. 230, 1183–1199 (1993).

    Article  CAS  Google Scholar 

  22. Hendle, J. et al. Biochemistry 34, 4287–4298 (1995).

    Article  CAS  Google Scholar 

  23. Niu, X.D., Stoops, J.K. & Reed, L.J. Biochemistry 29, 8614–8619 (1990).

    Article  CAS  Google Scholar 

  24. Shaw, W.V. & Leslie, A.G. Annu. Rev. Biophys. Biophys. Chem. 20, 363–386 (1991).

    Article  CAS  Google Scholar 

  25. Lewendon, A., Murray, I.A., Kleanthous, C., Cullis, P.M. & Shaw, W.V. Biochemistry 27, 7385–7390 (1988).

    Article  CAS  Google Scholar 

  26. Lessard, I.A., Healy, V.L., Park, I.S. & Walsh, C.T. Biochemistry 38, 14006–14022 (1999).

    Article  CAS  Google Scholar 

  27. Gulick, A.M., Schmidt, D.M., Gerlt, J.A. & Rayment, I. Biochemistry 40, 15716–15724 (2001).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. Data Collection and Processing (eds Sawer, L., Isaacs, N. & Bailey, S.) 55–62 (SERC, Daresbury Laboratory, Warrington; 1993).

    Google Scholar 

  29. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  30. Collaborative Computation Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  31. Cowtan, K. & Main, P. Acta Crystallogr. D 54, 487–493 (1998).

    Article  CAS  Google Scholar 

  32. Jones, T.A., Zou, J.W., Cowan, S. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  34. Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F. & Higgins, D. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  35. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. & Barton, G.J. Bioinformatics 14, 892–893 (1998).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  38. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.D. Bruner, V.N. Malashkevich and L. Luo for suggestions and technical assistance, A.G. Leslie for providing the coordinates of CAT–CoA, and A. Saxena, R. Sweet and the NSLS beamline staff for their generous help. T.A.K. was a fellow of the Damon Runyon-Walter Winchell Foundation. C.G.M. received funding from the NSERC of Canada and the Canadian Institutes of Health Research. This work was funded by the NIH (C.T.W.) and by MIT startup funds (A.E.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher T. Walsh or Amy E. Keating.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, T., Marshall, C., Walsh, C. et al. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Mol Biol 9, 522–526 (2002). https://doi.org/10.1038/nsb810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing