Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insights into CPT-11 activation by mammalian carboxylesterases

Abstract

Mammalian carboxylesterases cleave the anticancer prodrug CPT-11 (Irinotecan) into SN-38, a potent topoisomerase I poison, and 4-piperidino-piperidine (4PP). We present the 2.5 Å crystal structure of rabbit liver carboxylesterase (rCE), the most efficient enzyme known to activate CPT-11 in this manner, in complex with the leaving group 4PP. 4PP is observed bound adjacent to a high-mannose Asn-linked glycosylation site on the surface of rCE. This product-binding site is separated from the catalytic gorge by a thin wall of amino acid side chains, suggesting that 4PP may be released through this secondary product exit pore. The crystallographic observation of a leaving group bound on the surface of rCE supports the 'back door' product exit site proposed for the acetylcholinesterases. These results may facilitate the design of improved anticancer drugs or enzymes for use in viral-directed cancer cotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of rabbit liver carboxylesterase.
Figure 2: 'Side door'-binding site for 4PP.
Figure 3: Structural basis of CPT-11 activation by rCE.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Williams, F.M. Clin. Pharmacokinet. 10, 392–403 (1985).

    Article  CAS  Google Scholar 

  2. Bodor, N. & Buchwald, P. Med. Res. Rev. 20, 58–101 (2000).

    Article  CAS  Google Scholar 

  3. Joly, J.M. & Brown, T.M. Toxicol. Appl. Pharmacol. 84, 523–532 (1986).

    Article  CAS  Google Scholar 

  4. Brzezinski, M.R. et al. Drug Metab. Dispos. 25, 1089–1096 (1997).

    CAS  PubMed  Google Scholar 

  5. Kamendulis, L.M., Brzezinski, M.R., Pindel, E.V., Bosron, W.F. & Dean, R.A. J. Pharmacol. Exp. Ther. 279, 713–717 (1996).

    CAS  PubMed  Google Scholar 

  6. Lotti, M., Ketterman, A., Waskell, L. & Talcott, R.E. Biochem. Pharmacol. 32, 3735–3738 (1983).

    Article  CAS  Google Scholar 

  7. Ollis, D.L. et al. Protein Eng. 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  8. Morton, C.L. et al. Cancer Res. 60, 4206–4210 (2000).

    CAS  PubMed  Google Scholar 

  9. Potter, P.M., Pawlik, C.A., Morton, C.L., Naeve, C.W. & Danks, M.K. Cancer Res. 58, 2646–2651 (1998).

    CAS  PubMed  Google Scholar 

  10. Danks, M.K. et al. Clin. Cancer Res. 5, 917–924 (1999).

    CAS  PubMed  Google Scholar 

  11. Khanna, R., Morton, C.L., Danks, M.K. & Potter, P.M. Cancer Res. 60, 4725–4728 (2000).

    CAS  PubMed  Google Scholar 

  12. Pindel, E.V. et al. J. Biol. Chem. 272, 14769–14775 (1997).

    Article  CAS  Google Scholar 

  13. Bosron, W.F. & Hurley, T.D. Nature Struct. Biol. 9, 4–5 (2002).

    Article  CAS  Google Scholar 

  14. Chabot, G.G. Clin. Pharmacokinet. 33, 245–259 (1997).

    Article  CAS  Google Scholar 

  15. Danks, M.K., Morton, C.L., Pawlik, C.A. & Potter, P.M. Cancer Res. 58, 20–22 (1998).

    CAS  PubMed  Google Scholar 

  16. Potter, P.M., Wolverton, J.S., Morton, C.L., Wierdl, M. & Danks, M.K. Cancer Res. 58, 3627–3632 (1998).

    CAS  PubMed  Google Scholar 

  17. Wierdl, M. et al. Cancer Res. 61, 5078–5082 (2001).

    CAS  PubMed  Google Scholar 

  18. Meck, M.M. et al. Cancer Res. 61, 5083–5089 (2001).

    CAS  PubMed  Google Scholar 

  19. Harel, M. et al. Proc. Natl. Acad. Sci. USA 90, 9031–9035 (1993).

    Article  CAS  Google Scholar 

  20. Sussman, J.L., Harel, M. & Silman, I. Chem. Biol. Interact. 87, 187–197 (1993).

    Article  CAS  Google Scholar 

  21. Kryger, G., Silman, I. & Sussman, J.L. Structure Fold Des. 7, 297–307 (1999).

    Article  CAS  Google Scholar 

  22. Schrag, J.D. & Cygler, M. J. Mol. Biol. 230, 575–591 (1993).

    Article  CAS  Google Scholar 

  23. Chen, J.C. et al. Biochemistry 37, 5107–5117 (1998).

    Article  CAS  Google Scholar 

  24. Helenius, A. & Aebi, M. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  25. Gilson, M.K. et al. Science 263, 1276–1278 (1994).

    Article  CAS  Google Scholar 

  26. Bartolucci, C., Perola, E., Cellai, L., Brufani, M. & Lamba, D. Biochemistry 38, 5714–5719 (1999).

    Article  CAS  Google Scholar 

  27. Wallace, T.J., Kodsi, E.M., Langston, T.B., Gergis, M.R. & Grogan, W.M. J. Biol. Chem. 276, 33165–33174 (2001).

    Article  CAS  Google Scholar 

  28. Morton, C.L. & Potter, P.M. Mol. Biotechnol. 16, 193–202 (2000).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Data collection and processing (Daresbury Laboratories, Warrington; 1993).

  30. Matthews, B.W. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  31. Navaza, J. & Saludjian, P. Methods Enzymol. 276A, 581–594 (1997).

    Article  Google Scholar 

  32. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  34. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  35. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Esnouf, R.M. Acta. Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  38. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  39. Holm, L. & Sander, C. Nucleic Acids Res. 25, 231–234 (1997).

    Article  CAS  Google Scholar 

  40. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank R. Watkins, J. Chrencik, T. Thieu, Y. Xue, E. Collins, L. Betts and the members of the Redinbo Laboratory for discussions and experimental assistance. We also thank G. Pielak, D. Erie and A. Tripathy for assistance with CD thermal denaturation studies. Supported by a Burroughs Wellcome Career Award in the Biomedical Sciences (M.R.R.) and by the NIH and American Lebanese Syrian Associated Charities (P.M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Redinbo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bencharit, S., Morton, C., Howard-Williams, E. et al. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Mol Biol 9, 337–342 (2002). https://doi.org/10.1038/nsb790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing