Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of translational control by Escherichia coli threonyl tRNA synthetase

Abstract

Escherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate binding. The final positioning of the operator, upon which the control mechanism is based, relies on a characteristic RNA motif adapted to the enzyme surface. The finding of other thrS operators that have this conserved motif leads to a generalization of this regulatory mechanism to a subset of Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and secondary RNA structure.
Figure 2: Sequence alignments of the leader sequences of thrS.
Figure 3: Electron density and overall view of the complex.
Figure 4: Structure and interactions of d2RNA a, Structure of d2RNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Springer, M., Portier, C. & Grunberg-Manago, M. In RNA structure and function (eds Simons, R.W. & Grunberg-Manago, M.) 377–413 (Laboratory Press, Cold Spring Harbor; 1998).

    Google Scholar 

  2. Draper, D.E. J. Mol. Biol. 293, 255–270 (1999).

    Article  CAS  Google Scholar 

  3. Hentze, M.W. Trends Biochem. Sci. 19, 101–103 (1994).

    Article  CAS  Google Scholar 

  4. Lestienne, P., Plumbridge, J.A., Grunberg-Manago, M. & Blanquet, S. J. Biol. Chem. 259, 5232–5237 (1984).

    CAS  PubMed  Google Scholar 

  5. Springer, M. et al. J. Mol. Biol. 185, 93–104 (1985).

    Article  CAS  Google Scholar 

  6. Moine, H. et al. J. Mol. Biol. 216, 299–310 (1990).

    Article  CAS  Google Scholar 

  7. Comer, M.M., Dondon, J., Graffe, M., Yarchuk, O. & Springer, M. J. Mol. Biol. 261, 108–124 (1996).

    Article  CAS  Google Scholar 

  8. Sacerdot, C. et al. Mol. Microbiol. 29, 1077–1090 (1998).

    Article  CAS  Google Scholar 

  9. Romby, P. et al. EMBO J. 15, 5976–5987 (1996).

    Article  CAS  Google Scholar 

  10. Springer, M., Graffe, M., Butler, J.S. & Grunberg-Manago, M. Proc. Natl. Acad. Sci. USA 83, 4384–4388 (1986).

    Article  CAS  Google Scholar 

  11. Graffe, M. et al. Science 255, 994–996 (1992).

    Article  CAS  Google Scholar 

  12. Brunel, C. et al. J. Mol. Biol. 227, 621–634 (1992).

    Article  CAS  Google Scholar 

  13. Sankaranarayanan, R. et al. Cell 97, 371–381 (1999).

    Article  CAS  Google Scholar 

  14. Sankaranarayanan, R. et al. Nature Struct. Biol. 7, 461–465 (2000).

    Article  CAS  Google Scholar 

  15. Brunel, C. et al. Biochimie 75, 1167–1179 (1993).

    Article  CAS  Google Scholar 

  16. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  17. Wimberly, B.T. et al. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  18. Springer, M., Graffe, M., Dondon, J. & Grunberg-Manago, M. EMBO J. 8, 2417–2424 (1989).

    Article  CAS  Google Scholar 

  19. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  20. Mao, H., White, S.A. & Williamson, J.R. Nature Struct. Biol. 6, 1139–1147 (1999).

    Article  CAS  Google Scholar 

  21. Nikulin, A. et al. Nature Struct. Biol. 7, 273–277 (2000).

    Article  CAS  Google Scholar 

  22. Briand, C. et al. J. Mol. Biol. 299, 1051–1060 (2000).

    Article  CAS  Google Scholar 

  23. Moulinier, L. et al. EMBO J. 20, 5290–5301 (2001).

    Article  CAS  Google Scholar 

  24. Cusack, S., Yaremchuk, A., Krikliviy, I. & Tukalo, M. Structure 6, 101–108 (1998).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. In Macromolecular crystallography Vol. 276 (eds Carter, C.W. & Sweet, R.M.) Part A, 307–326 (Academic Press, New York; 1997).

    Book  Google Scholar 

  26. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Winter for help with purification of the macromolecules and the ESRF staff in Grenoble for assistance during data collection. A.T.L. is a recipient of a scholarship from Consejo Nacional de Ciencia y Tecnología (Mexico). This work was supported by funds from Aventis, the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique and the Université Louis Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Moras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Larios, A., Dock-Bregeon, AC., Romby, P. et al. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nat Struct Mol Biol 9, 343–347 (2002). https://doi.org/10.1038/nsb789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing