Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase

Abstract

To understand the molecular mechanism underlying phosphoryl transfer of cAMP-dependent protein kinase, the structure of the catalytic subunit in complex with ADP, aluminum fluoride, Mg2+ ions and a substrate peptide was determined at 2.0 Å resolution. Aluminum fluoride was modeled as AlF3 in a planar geometry; it is positioned 2.3 Å from both the donor oxygen of ADP and the hydroxyl group of the recipient Ser residue. In this configuration, the aluminum atom forms a trigonal bipyramidal coordination with the oxygen atoms of the donor and recipient groups at the apical positions. This arrangement suggests that aluminum fluoride mimics the transition state and provides the first direct structural evidence for the in-line mechanism of phosphoryl transfer in a protein kinase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall view of the Mg2ADP–SP20–AlF3 complex of the catalytic subunit (cAPK) with the difference density at the position of AlF3.
Figure 2: Stereo view of the catalytically important residues, nucleotide, metal ions and phosphorylation site of the catalytic subunit complex of Mg2ADP, SP20 and AlF3 displayed in ball-and-stick representation.
Figure 3: Schematic representation depicting the detailed interactions of aluminum fluoride with Mg2ADP, active site residues of the catalytic subunit, water molecules and the phosphorylation site Ser from SP20.

Accession codes

Accessions

Protein Data Bank

References

  1. Gibbs, C.S., Knighton, D.R., Sowadski, J.M., Taylor, S.S. & Zoller, M.J. J. Biol. Chem. 267, 4806–4814 (1992).

    CAS  PubMed  Google Scholar 

  2. Johnson, D.A., Akamine, P., Radzio-Andzelm, E., Madhusudan & Taylor, S.S. Chem. Rev. 101, 2243–2270 (2001).

    Article  CAS  Google Scholar 

  3. Knighton, D.R. et al. Science 253, 414–420 (1991).

    Article  CAS  Google Scholar 

  4. Bossemeyer, D., Engh, R.A., Kinzel, V., Ponstingl, H. & Huber, R. EMBO J. 12, 849–859 (1993).

    Article  CAS  Google Scholar 

  5. Karlsson, R., Zheng, J.H., Xuong, N.H., Taylor, S.S. & Sowadski, J.M. Acta Crystallogr. D 49, 381–388 (1993).

    Article  CAS  Google Scholar 

  6. Zheng, J.H. et al. Acta Crystallogr. D 49, 362–365 (1993).

    Article  CAS  Google Scholar 

  7. Braig, K., Menz, R.I., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Structure Fold. Des. 8, 567–573 (2000).

    Article  CAS  Google Scholar 

  8. Käck, H., Sandmark, J., Gibson, K.J., Schneider, G. & Lindqvist, Y. Protein Sci. 7, 2560–2566 (1998).

    Article  Google Scholar 

  9. Xu, Y.W., Moréra, S., Janin, J. & Cherfils, J. Proc. Natl. Acad. Sci. USA 94, 3579–3583 (1997).

    Article  CAS  Google Scholar 

  10. Schlichting, I. & Reinstein, J. Biochemistry 36, 9290–9296 (1997).

    Article  CAS  Google Scholar 

  11. Sudom, A.M., Prasad, L., Goldie, H. & Delbaere, L.T. J. Mol. Biol. 314, 83–92 (2001).

    Article  CAS  Google Scholar 

  12. Ostermann, N. et al. Structure 8, 629–642 (2000).

    Article  CAS  Google Scholar 

  13. Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Nature 372, 276–279 (1994).

    Article  CAS  Google Scholar 

  14. Coleman, D.E. et al. Science 265, 1405–1412 (1994).

    Article  CAS  Google Scholar 

  15. Datta, S. et al. Nucleic Acids Res. 28, 4964–4973 (2000).

    Article  CAS  Google Scholar 

  16. Fisher, A.J. et al. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  17. Madhusudan et al. Protein Sci. 3, 176–187 (1994).

    Article  CAS  Google Scholar 

  18. Walsh, D.A., Angelos, K.L., Van Patten, S.M., Glass, D.B. & Garetto, L.P. The inhibitor protein of the cAMP-dependent protein kinase 43–84 (CRC Press, Boca Raton; 1990).

    Google Scholar 

  19. Smith, C.M., Radzio-Andzelm, E., Madhusudan, Akamine, P. & Taylor, S.S. Prog. Biophys. Mol. Biol. 71, 313–341 (1999).

    Article  CAS  Google Scholar 

  20. Aimes, R.T., Hemmer, W. & Taylor, S.S. Biochemistry 39, 8325–8332 (2000).

    Article  CAS  Google Scholar 

  21. Sicheri, F. & Kuriyan, J. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  Google Scholar 

  22. Hutter, M.C. & Helms, V. Protein Sci. 8, 2728–2733 (1999).

    Article  CAS  Google Scholar 

  23. Zhou, J. & Adams, J.A. Biochemistry 36, 2977–2984 (1997).

    Article  CAS  Google Scholar 

  24. Ho, M.F., Bramson, H.N., Hansen, D.E., Knowles, J.R. & Kaiser, E.T. J. Am. Chem. Soc. 110, 2680–2681 (1988).

    Article  CAS  Google Scholar 

  25. Mildvan, A.S. Proteins 29, 401–416 (1997).

    Article  CAS  Google Scholar 

  26. Herschlag, D. & Jencks, W.P. Biochemistry 29, 5172–5179 (1990).

    Article  CAS  Google Scholar 

  27. Herberg, F.W., Doyle, M.L., Cox, S. & Taylor, S.S. Biochemistry 38, 6352–6360 (1999).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Ramachandran, G.N. & Sasisekharan, V. Adv. Protein Chem. 23, 283–437 (1968).

    Article  CAS  Google Scholar 

  33. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Esnouf, R.M. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Johnson for his valuable comments, E. Radzio-Andzelm for generating Fig. 2, C. Juliano for the protein preparation and N. Nguyen for X-ray data collection support. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research; the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program; and the National Institute of General Medical Sciences. This work was supported by a grant from the National Institutes of Health (to S.S.T.). P.A. was supported by an NIH training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhusudan, Akamine, P., Xuong, NH. et al. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat Struct Mol Biol 9, 273–277 (2002). https://doi.org/10.1038/nsb780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing