Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization

Abstract

Metabolite glycosylation is affected by three classes of enzymes: nucleotidylyltransferases, which activate sugars as nucleotide diphospho-derivatives, intermediate sugar-modifying enzymes and glycosyltransferases, which transfer the final derivatized activated sugars to aglycon substrates. One of the first crystal structures of an enzyme responsible for the first step in this cascade, α-D-glucopyranosyl phosphate thymidylyltransferase (Ep) from Salmonella, in complex with product (UDP-Glc) and substrate (dTTP) is reported at 2.0 Å and 2.1 Å resolution, respectively. These structures, in conjunction with the kinetic characterization of Ep, clarify the catalytic mechanism of this important enzyme class. Structure-based engineering of Ep produced modified enzymes capable of utilizing 'unnatural' sugar phosphates not accepted by wild type Ep. The demonstrated ability to alter nucleotidylyltransferase specificity by design is an integral component of in vitro glycosylation systems developed for the production of diverse glycorandomized libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential of Ep for glycosylation.
Figure 2: Structure of Ep bound to UDP-Glc or dTTP.
Figure 3: The Ep active site.
Figure 4: Ep catalytic mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thorson, J.S. et al. Nature's carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites. Curr. Org. Chem. 5, 89–111 (2001).

    Article  Google Scholar 

  2. Weymouth-Wilson, A.C. The role of carbohydrates in biologically active natural products. Natural Product Reports 14, 99–110 (1997).

    Article  CAS  Google Scholar 

  3. Liu, H.-W. & Thorson, J.S. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu. Rev. Microbiol. 48, 223–256 (1994).

    Article  CAS  Google Scholar 

  4. Kirschning, A., Bechtold, A.F-W. & Rohr, J. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top. Curr. Chem. 188, 1–84 (1997).

    Article  CAS  Google Scholar 

  5. Johnson, D.A. & Liu, H.-W. Mechanisms and pathways from recent deoxysugar biosynthesis research. Curr. Opin. Chem. Biol. 2, 642–649 (1998).

    Article  CAS  Google Scholar 

  6. Hallis, T.M. & Liu, H.-W. Learning nature's strategies for making deoxy sugars: pathways, mechanisms, and combinatorial applications. Accts. Chem. Res. 32, 579–588 (1999).

    Article  CAS  Google Scholar 

  7. Johnson, D.A. & Liu, H.-W. In Comprehensive chemistry of natural product chemistry. (eds Barton, D., Nakanishi, K. & Meth-Cohn, O.) 311–365 (Elsevier Science, Oxford; 1999).

    Book  Google Scholar 

  8. Trefzer, A., Salas, J. & Bechthold, A. Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Natural Product Reports 16, 283–299 (1999).

    Article  CAS  Google Scholar 

  9. Bechthold, A. & Rohr, J. In New aspects of bioorganic chemistry. (eds Diederichsen, U., Lindhorst, T.K., Wessjohann, L. & Westerman, B.) 313–348 (Wiley-VCH, Weinheim; 1999).

    Google Scholar 

  10. Madduri, K. et al. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotech. 16, 69–74 (1998).

    Article  CAS  Google Scholar 

  11. Hutchinson, C.R. Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1, 319–329 (1998).

    Article  CAS  Google Scholar 

  12. Solenberg, P.J. et al. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4, 195–202 (1997).

    Article  CAS  Google Scholar 

  13. Lindquist, L., Kaiser, R., Reeves, P.R. & Lindberg, A.A. Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyltransferase from the cloned rfbA gene. Eur. J. Biochem. 211, 763–770 (1993).

    Article  CAS  Google Scholar 

  14. Jiang, J., Biggins, J.B. & Thorson, J.S. A general enzymatic method for the synthesis of natural and 'unnatural' UDP- and TDP-nucleotide sugars. J. Am. Chem. Soc. 122, 6803–6804 (2000).

    Article  CAS  Google Scholar 

  15. Jiang, J., Biggins, J.B. & Thorson, J.S. Expanding the pyrimidine diphosphosugar repertoire: the chemoenzymatic synthesis of amino- and acetamidoglucopyranosyl derivatives. Angew. Chem. 40, 1502–1505 (2001).

    Article  CAS  Google Scholar 

  16. Vrielink, A., Ruger, W., Dreissen, H.P.C. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  17. Charnock, S.J. & Davies, G.J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999).

    Article  CAS  Google Scholar 

  18. Gastinel, L.N. Cambillau, C. & Bourne, Y. Crystal structures of the bovine β4-galatosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18, 3546–3557 (1999).

    Article  CAS  Google Scholar 

  19. Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9, 1045–1052 (2000).

    Article  CAS  Google Scholar 

  20. Brown, K. et al. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridylyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J. 18, 4096–4107 (1999).

    Article  CAS  Google Scholar 

  21. Rossmann, M.G. et al. In The enzymes (ed. I.P.D. Boyyer) 61–102 (Academic Press, New York; 1975).

    Google Scholar 

  22. Branden, C. & Tooze, J. Introduction to protein structure. (Garlan Publishing, Inc., New York; 1991).

    Google Scholar 

  23. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

    Article  CAS  Google Scholar 

  24. Wedekind, J.P., Frey, P.A. & Rayment, I. Three-dimensional structure of galactose-1-phosphate uridylyltransferase from Escherichia coli at 1.8 Å resolution. Biochemistry 34, 11049–11061 (1995).

    Article  CAS  Google Scholar 

  25. Pedersen, L., Benning, M. & Holden, H. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry 34, 13305–13311 (1995).

    Article  CAS  Google Scholar 

  26. Kornfeld, S. & Glaser, L. The enzymatic synthesis of thymidine-linked sugars. J. Biol. Chem. 236, 1791–1794 (1961).

    CAS  PubMed  Google Scholar 

  27. Bulik, D.A. et al. UDP-N-acetylglucosamine pyrophosphorylase, a key enzyme in encysting Giardia, is allosterically regulated. J. Biol. Chem. 275, 14722–14728 (2000).

    Article  CAS  Google Scholar 

  28. Sheu, K.-F.R., Richard, J.P. & Frey, P.A. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase and nucleoside diphosphate kinase. Biochemistry 18, 5548–5556 (1979).

    Article  CAS  Google Scholar 

  29. Segel, I.H. In Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems, (John Wiley & Sons, Inc., New York; 1975).

    Google Scholar 

  30. Volchegursky, Y., Hu, Z., Katz, L. & McDaniel, R. Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharoropolyspora erythraea. Mol. Microbiol. 37, 752–762 (2000).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. In Data collection and processing. (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  32. CCP4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  33. Hendrickson, W.A., Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  34. Miller, R., Gallo, S.M., Khalak, H.G., & Weeks C.M. SnB: crystal structure determination via shake-and-bake. J. Appl. Crystallogr. 32, 120–124 (1994).

    Google Scholar 

  35. Jones, T.A. et al. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Brünger, A.T. X-PLOR v. 3.1 Manual. (Yale University, New Haven; 1993).

    Google Scholar 

  37. Blankenfeldt, W., Asuncion, M., Lam, J.S. & Naismith, J.H. The structural basis of the catalytic mechanism and regulation of glucose-1-phoshate thymidylyltransferase (Rm1A) EMBO J. 19, 6652–6663 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This contribution was supported in part by the National Institutes of Health to D.B.N. and J.S.T., a Cancer Center Support Grant and a grant from the Special Projects Committee of the Society of Memorial Sloan-Kettering Cancer Center. D.B.N. is a Pew Scholar. J.S.T. is an Alfred P. Sloan Research Fellow and a Rita Allen Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jon S. Thorson or Dimitar B. Nikolov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, W., Lesniak, J., Biggins, J. et al. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat Struct Mol Biol 8, 545–551 (2001). https://doi.org/10.1038/88618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing