Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aminoglycoside binding displaces a divalent metal ion in a tRNA–neomycin B complex

Abstract

Aminoglycosides bind to RNA and interfere with its function, and it has been suggested that aminoglycoside binding to RNA displaces essential divalent metal ions. Here we demonstrate that addition of various aminoglycosides inhibited Pb2+-induced cleavage of yeast tRNAPhe. Cocrystallization of yeast tRNAPhe and an aminoglycoside, neomycin B, resulted in crystals that diffracted to 2.6 Å and the structure of the complex was solved by molecular replacement. The structure shows that the neomycin B binding site overlaps with known divalent metal ion binding sites in yeast tRNAPhe, providing direct evidence for the hypothesis that aminoglycosides displace metal ions. Additionally, the neomycin B binding site overlaps with major determinants for Escherichia coli phenylalanyl-tRNA-synthetase. Here we present data demonstrating that addition of neomycin B inhibited aminoacylation of E. coli tRNAPhe in the mid μM range. Given that aminoglycoside and metal ion binding sites overlap, we discuss that aminoglycosides can be considered as 'metal mimics'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of aminoglycosides and yeast tRNAPhe.
Figure 2: Aminoglycoside inhibition of Pb2+ cleavage and aminoacylation of tRNA.
Figure 3: Three dimensional structure of yeast tRNAPhe in complex with neomycin B.
Figure 4: Structural comparison of neomycin B bound to various RNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. EMBO J. 17, 6437–6448 (1998).

    Article  CAS  Google Scholar 

  2. Stage, T.K., Hertel, K.J. & Uhlenbeck, O.C. RNA 1, 95–101 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogers, J., Chang, A.H., von Ahsen, U., Schroeder, R., & Davies, J. J. Mol. Biol. 259, 916–925 (1996).

    Article  CAS  Google Scholar 

  4. von Ahsen, U., Davies, J. & Schroeder, R. Nature 353, 368–370 (1991).

    Article  CAS  Google Scholar 

  5. von Ahsen, U., Davies, J. & Schroeder, R. J. Mol. Biol. 226, 935–941 (1992).

    Article  CAS  Google Scholar 

  6. Mikkelsen, N.E., Brännvall, M., Virtanen, A., & Kirsebom, L.A. (1999) Proc. Natl. Acad. Sci. USA 96, 6155–6160 (1999).

    Article  CAS  Google Scholar 

  7. Hermann, T., & Westhof, E. J. Mol. Biol. 276, 903–912 (1998).

    Article  CAS  Google Scholar 

  8. Hoch, I., Berens, C., Westhof, E., & Schroeder, R. J. Mol. Biol. 282, 557–569 (1998).

    Article  CAS  Google Scholar 

  9. Feig, A.L. & Uhlenbeck, O.C. In The RNA world: second edition (eds Gestland, R.F., Cech, T.R. & Atkins, J.F.) 287–319 (Cold Spring Harbor Press, Cold Spring Harbor, New York; 1999).

    Google Scholar 

  10. Brown, R.S., Hingerty, B.E., Dewan, J.C. & Klug, A. Nature 303, 543–546 (1983).

    Article  CAS  Google Scholar 

  11. Brown, R.S., Dewan, J.C. & Klug, A. Biochemistry 24, 4785–4801 (1985).

    Article  CAS  Google Scholar 

  12. Kirk, S.R., & Tor, Y. Bioorg. Med. Chem. 7, 1979–1991 (1999).

    Article  CAS  Google Scholar 

  13. Jack, A., Ladner, J.E., Rhodes, D., Brown, R.S. & Klug, A. J. Mol. Biol. 111, 315–328 (1977).

    Article  CAS  Google Scholar 

  14. Jovine, L., Djordjevic, S. & Rhodes, D. J. Mol. Biol. 301, 401–414 (2000).

    Article  CAS  Google Scholar 

  15. Shi, H. & Moore, P.B. RNA 6, 1091–1105 (2000).

    Article  CAS  Google Scholar 

  16. Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M. & Kim, S.-H. J. Mol. Biol. 123, 607–630 (1978).

    Article  CAS  Google Scholar 

  17. Behlen, L.S., Sampson, J.R., DiRenzo, A.B. & Uhlenbeck, O.C. Biochemistry 29, 2515–2523 (1990).

    Article  CAS  Google Scholar 

  18. McClain, W.H. & Foss, K. J. Mol. Biol. 202, 697–709 (1988).

    Article  CAS  Google Scholar 

  19. Fourmy, D., Recht, M.I., Blanchard, S.C. & Puglisi, J.D. Science 274, 1367–1371 (1996).

    Article  CAS  Google Scholar 

  20. Faber, C., Sticht, H., Schweimer, K. & Rösch, P. J. Biol. Chem. 275, 20660–20666 (2000).

    Article  CAS  Google Scholar 

  21. Jiang, L., Majumdar, A., Hu, W., Jaishree, T.J. & Patel, D.J. Struct. Fold Des. 7, 817–827 (1999).

    Article  CAS  Google Scholar 

  22. Varani, L., Spillantini, M.G., Goedert, M. & Varani, G. Nucleic Acids Res. 28, 710–719 (2000).

    Article  CAS  Google Scholar 

  23. Kufel, J. & Kirsebom, L.A. J. Mol. Biol. 263, 685–698 (1996).

    Article  CAS  Google Scholar 

  24. Kufel, J. & Kirsebom, L.A. RNA 4, 777–788 (1998).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. In proceedings of the CCP4 study weekend (eds. Sawyer, L., Issacs, N. & Bailey, S.) 56–62 (Daresburry Laboratories, Warrington, UK; 1993).

    Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Bacon, D.J. & Anderson, W.F. J. Mol. Graph. 6 (1988).

  29. Westhof, E., & Sundaralingam, M. Biochemistry 25, 4868–4878 (1986).

    Article  CAS  Google Scholar 

  30. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  31. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Eklund and D. Hughes for discussions and critical reading of the manuscript. We are also grateful to J. Davis for the generous gift of 5-epi-sisomicin. This work was supported by the Strategic Research Foundation and the Swedish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif A. Kirsebom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelsen, N., Johansson, K., Virtanen, A. et al. Aminoglycoside binding displaces a divalent metal ion in a tRNA–neomycin B complex. Nat Struct Mol Biol 8, 510–514 (2001). https://doi.org/10.1038/88569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing