Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair

Abstract

The low-density lipoprotein receptor (LDLR) is the primary mechanism for uptake of cholesterol-carrying particles into cells. The region of the LDLR implicated in receptor recycling and lipoprotein release at low pH contains a pair of calcium-binding EGF-like modules, followed by a series of six YWTD repeats and a third EGF-like module. The crystal structure at 1.5 Å resolution of a receptor fragment spanning the YWTD repeats and its two flanking EGF modules reveals that the YWTD repeats form a six-bladed β-propeller that packs tightly against the C-terminal EGF module, whereas the EGF module that precedes the propeller is disordered in the crystal. Numerous point mutations of the LDLR that result in the genetic disease familial hypercholesterolemia (FH) alter side chains that form conserved packing and hydrogen bonding interactions in the interior and between propeller blades. A second subset of FH mutations are located at the interface between the propeller and the C-terminal EGF module, suggesting a structural requirement for maintaining the integrity of the interdomain interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization, sequence alignment and electron density.
Figure 2: Overview of structure and features of propeller blades.
Figure 3: Complementarity in the interface between the YWTD propeller and E3.
Figure 4: Sites of FH mutations mapped onto the structure of the YWTD-EGF domain pair.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Goldstein, J.L. & Brown, M.S. J. Biol. Chem. 249, 5153–5162 (1974).

    CAS  PubMed  Google Scholar 

  2. Brown, M.S. & Goldstein, J.L. Science 232, 34–47 (1986).

    Article  CAS  Google Scholar 

  3. Brown, M.S. & Goldstein, J.L. Proc. Natl. Acad. Sci. USA 71, 788–792 (1974).

    Article  CAS  Google Scholar 

  4. Yamamoto, T. et al. Cell 39, 27–38 (1984).

    Article  CAS  Google Scholar 

  5. Sudhof, T.C., Goldstein, J.L., Brown, M.S. & Russell, D.W. Science 228, 815–822 (1985).

    Article  CAS  Google Scholar 

  6. Sudhof, T.C., Russell, D.W., Goldstein, J.L. & Brown, M.S. Science 228, 893–895 (1985).

    Article  CAS  Google Scholar 

  7. Springer, T.A. J. Mol. Biol. 283, 837–862 (1998).

    Article  CAS  Google Scholar 

  8. Davis, C.G. et al. Nature 326, 760–765 (1987).

    Article  CAS  Google Scholar 

  9. Willnow, T.E., Nykjaer, A. & Herz, J. Nature Cell Biol. 1, E157–162 (1999).

    Article  CAS  Google Scholar 

  10. Herz, J., Gotthardt, M. & Willnow, T.E. Curr. Opin. Lipidol. 11, 161–166 (2000).

    Article  CAS  Google Scholar 

  11. Herz, J., Clouthier, D.E. & Hammer, R.E. Cell 71, 411–421 (1992).

    Article  CAS  Google Scholar 

  12. Hafen, E., Basler, K., Edstroem, J.-E. & Rubin, G.M. Science 236, 55–63 (1987).

    Article  CAS  Google Scholar 

  13. Simon, M.A., Bowtell, D.D.L. & Rubin, G.M. Proc. Natl. Acad. Sci. USA 86, 8333–8337 (1989).

    Article  CAS  Google Scholar 

  14. Hiesberger, T. et al. Neuron 24, 481–489 (1999).

    Article  CAS  Google Scholar 

  15. Trommsdorff, M. et al. Cell 97, 689–701 (1999).

    Article  CAS  Google Scholar 

  16. Wehrli, M. et al. Nature 407, 527–530 (2000).

    Article  CAS  Google Scholar 

  17. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. Nature 407, 535–538 (2000).

    Article  CAS  Google Scholar 

  18. Tamai, K. et al. Nature 407, 530–535 (2000).

    Article  CAS  Google Scholar 

  19. Moult, J. Curr. Opin. Biotechnol. 10, 583–588 (1999).

    Article  CAS  Google Scholar 

  20. Murzin, A.G. Proteins Struct. Func. Genet. 14, 191–201 (1992).

    Article  CAS  Google Scholar 

  21. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Nature 379, 369–374 (1996).

    Article  CAS  Google Scholar 

  22. Wall, M.A. et al. Cell 83, 1047–1058 (1995).

    Article  CAS  Google Scholar 

  23. Lambright, D.G. et al. Nature 379, 311–319 (1996).

    Article  CAS  Google Scholar 

  24. Willnow, T.E. J. Mol. Med. 77, 306–315 (1999).

    Article  CAS  Google Scholar 

  25. Conte, L.L., Chothia, C. & Janin, J. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  Google Scholar 

  26. ter Haar, E., Musacchio, A., Harrison, S.C. & Kirchhausen, T. Cell 95, 563–573 (1998).

    Article  CAS  Google Scholar 

  27. Sprague, E.R., Redd, M.J., Johnson, A.D. & Wolberger, C. Embo J. 19, 3016–3027 (2000).

    Article  CAS  Google Scholar 

  28. Goldstein, J.L., Hobbs, H.H. & Brown, M.S. In The metabolic and molecular bases of inherited disease, Vol. 2 (eds. Scriver, C.S., Beaudet, A.L., Sly, W.S. & Valle, D.) 1981–2030 (McGraw Hill Inc., New York; 1995).

    Google Scholar 

  29. Wilson, D.J. et al. Am. J. Cardiol. 81, 1509–1511 (1998).

    Article  CAS  Google Scholar 

  30. Varret, M. et al. Nucleic Acids Res. 26, 248–252 (1998).

    Article  CAS  Google Scholar 

  31. Fox, J.W. et al. EMBO J. 10, 3137–3146 (1991).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  35. Lamzin, V.S. & Wilson, K.S. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  36. Gotoh, O. J. Mol. Biol. 264, 823–838 (1996).

    Article  CAS  Google Scholar 

  37. Sali, A. & Blundell, T.L. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  38. Koradi, R., Billeter, M. & Wuthrich, K. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

  39. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  40. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.-H. Wang for helpful discussions, F. Poy for assistance with computer graphics, S.E. Choe for the program homology, and C. Heaton and the staff at CHESS for assistance with synchotron data collection on beamline A1. This research is supported by NIH grants to S.C.B, T.A.S. and M.J.E. S.C.B. is a Pew Scholar in the Biomedical Sciences. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation, using the Macromolecular Diffraction at CHESS (MacCHESS) facility, which is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Blacklow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, H., Meng, W., Takagi, J. et al. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Mol Biol 8, 499–504 (2001). https://doi.org/10.1038/88556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing