Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Completeness in structural genomics

Abstract

Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random. With a choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort of structural genomics. It would take 16,000 carefully selected structure determinations to construct useful atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade provided that selection of targets is highly coordinated and significant funding is available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accuracy of CASP protein structure models as a function of target-template sequence identity.
Figure 2: Current structural coverage of proteins in SP + TrEMBL.
Figure 3: Structural coverage of a protein family, illustrated using the Ras family in yeast as an example.
Figure 4: Scope of structural coverage as a function of model quality.
Figure 5: Two factors affecting the scale of structural genomics.

Similar content being viewed by others

References

  1. Kim, S.H. Shining a light on structural genomics. Nature Struct. Biol. 5, 643–645 (1998).

    Article  CAS  Google Scholar 

  2. Terwilliger, T.C. et al. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci. 7, 1851–1856 (1998).

    Article  CAS  Google Scholar 

  3. Sali, A. 100,000 protein structures for the biologist. Nature Struct. Biol. 5, 1929–1932 (1998).

    Article  Google Scholar 

  4. Montelione G.T. & Anderson, S. Structural genomics: keystone for a human proteome. Nature Struct. Biol. 6, 11–12 (1999).

    Article  CAS  Google Scholar 

  5. Burley, S.K. et al. Structural genomics: beyond the human genome project. Nature Genet. 23, 151–157 (1999).

    Article  CAS  Google Scholar 

  6. Eisenstein, E. et al. Biological function made crystal clear – annotation of hypothetical proteins via structural genomics. Curr. Opin. Biol. 11, 25–30 (2000).

    Article  CAS  Google Scholar 

  7. NIGMS Structural Genomics workshop. http://www.nigms.nih.gov/news/meetings/structural_genomics_targets.html (NIH campus, USA; 1999).

  8. Govindarajan, S., Recabarren, R. & Goldstein, R.A. Estimating the total number of protein folds. Proteins 35, 408–414 (1999).

    Article  CAS  Google Scholar 

  9. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  10. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  11. Moult, J., Hubbard, T., Fidelis, K. & Pedersen, J.T. Critical assessment of methods of protein structure prediction (CASP): Round3. Proteins S3, 2–6 (1999).

    Article  Google Scholar 

  12. Martin, A.C., MacArthur, M.W. & Thornton, J.M. Assessment of comparative modeling in CASP2. Proteins Suppl. 1, 14–28 (1997).

    Article  Google Scholar 

  13. Sanchez, R. & Sali, A. Advances in comparative modeling. Curr. Opin. Struct. Biol. 7, 206–214 (1997).

    Article  CAS  Google Scholar 

  14. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its new supplement. TrEMBL. Nucleic Acids Res. 24, 17–21 (1996).

    Article  Google Scholar 

  15. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  16. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  Google Scholar 

  17. Holm, L. & Sander, C. Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res. 25, 231–234 (1997).

    Article  CAS  Google Scholar 

  18. Orengo, C.A. et al. CATH – a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997).

    Article  CAS  Google Scholar 

  19. Hobohm, U., Sander, C., Scharf, M. & Schneider, R. Selection of representative protein datasets. Protein Sci. 1, 409–417 (1992).

    Article  CAS  Google Scholar 

  20. Sanchez, R. & Sali, A. Large-scale protein structure modeling of Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597–13602 (1998).

    Article  CAS  Google Scholar 

  21. Guex, N., Diemand, A. & Peitsch, M.C. Protein modeling for all. Trends Biochem. Sci. 24, 364–367 (1999).

    Article  CAS  Google Scholar 

  22. Teichmann, S.A., Chothia, C. & Gerstein, M. Advances in structural genomics. Curr. Opin. Struct. Biol. 9, 390–399 (1999).

    Article  CAS  Google Scholar 

  23. Sanchez, R. & Sali, A. ModBase: A database of comparative protein structural models. Bioinformatics 15, 1060–1061 (1999).

    Article  CAS  Google Scholar 

  24. Wolf, Y.I., Brenner, S.E., Bash, P.A. & Koonin, E.V. Distribution of protein folds in the three superkingdoms of life. Genome Res. 9, 17–26 (1999).

    CAS  PubMed  Google Scholar 

  25. Gerstein, M. Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins 33, 518–534 (1998).

    Article  CAS  Google Scholar 

  26. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 27, 263–266 (2000).

    Article  Google Scholar 

  27. Holm, L. & Sander, C. Dictionary of recurrent domains in protein structures. Proteins 33, 88–96 (1998).

    Article  CAS  Google Scholar 

  28. Eddy, S.R. Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361–365 (1996).

    Article  CAS  Google Scholar 

  29. Wootton, J.C. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–274 (1994).

    Article  CAS  Google Scholar 

  30. Fischer, D. & Eisenberg, D. Finding families for genomics ORFans. Bioinformatics 15, 759–762 (1999).

    Article  CAS  Google Scholar 

  31. Ashburner, M. et al. An exploration of the sequence of a 2.9-megabase region of the genome of Drosophila melanogaster – The Adh region. Genetics 15, 179–219 (1999).

    Google Scholar 

  32. Rubin, M.G. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  Google Scholar 

  33. Sonnhammer, E.L.L. & Durbin, R. Analysis of protein domain families in Caenorhabditis elegans. Genomics 46, 200–216 (1997).

    Article  CAS  Google Scholar 

  34. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768 (1999).

    Article  CAS  Google Scholar 

  35. Mayer, K. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777 (1999).

    Article  CAS  Google Scholar 

  36. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  Google Scholar 

  37. Eddy, S., Mitchison, G. & Durbin, R. Maximum discrimination hidden Markov models of sequence consensus. J. Comput. Biol. 2, 9–23 (1995).

    Article  CAS  Google Scholar 

  38. Wolf, Y.I., Grishin, N.V. & Koonin, E.V. Estimating the number of protein folds and families from complete genome data. J. Mol. Biol. 299, 897–905 (2000).

    Article  CAS  Google Scholar 

  39. Krause, A., Nicodeme, P., Bornber-Bauer, E., Rehmsmeier, M. & Vingron, M. WWW access to the SYSTERS protein sequence cluster set. Bioinformatics 15, 262–263 (1999).

    Article  CAS  Google Scholar 

  40. Heger, A. & Holm, L. Towards a covering set of protein family profiles. Prog. Biophys. Mol. Biol. 73, 321–337 (2000).

    Article  CAS  Google Scholar 

  41. Yona, G., Linial, N., Tishby, N. & Linial, M. A map of the protein space – an automatic hierarchical classification of all protein sequences. ISMB 6, 212–221 (1998).

    CAS  PubMed  Google Scholar 

  42. Corpet, F., Gouzy, J. & Kahn, D. Recent improvements of the ProDom database of protein domain families. Nucleic Acids Res. 27, 263–267 (1999).

    Article  CAS  Google Scholar 

  43. Tatusov, R.L., Koonin, E.V. & Lipman, D.J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  Google Scholar 

  44. Wu, C.H., Shivakumar, S. & Huang, H. ProClass protein family database. Nucleic Acids Res. 27, 272–274 (1999).

    Article  CAS  Google Scholar 

  45. Bourne, P.E. Editorial in bioinformatics. Bioinformatics 15, 715–716 (1999).

    Google Scholar 

  46. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999).

    Article  CAS  Google Scholar 

  47. Brenner, S.E. & Levitt, M. Expectations from structural genomics. Protein Sci. 9, 197–200 (2000).

    Article  CAS  Google Scholar 

  48. Kohonen, T., Hynninen, J., Kangas, J. & Laaksonen, J. SOM_PAK: The self-organizing map program package. (Helsinki University of Technology, Helsinki; 1996).

    Google Scholar 

  49. Bernstein, F.C. et al. The Protein Data Bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 122, 535–542 (1977).

    Article  Google Scholar 

  50. Czero, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 17, 673–676 (1997).

    Google Scholar 

  51. Elofsson, A. & Sonnhammer, E.L.L. A comparison of sequence and structure protein domain families as a basis for structural genomics. Bioinformatics 15, 480–500 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Holm, D. Marks and J. Norvell for discussions and C. Venclosas for providing CASP template/target sequence identity data. This work was supported in part by research grants from the US National Institute of Health (NIGMS) and the Department of Energy to J.M. and C.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Sander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkup, D., Melamud, E., Moult, J. et al. Completeness in structural genomics. Nat Struct Mol Biol 8, 559–566 (2001). https://doi.org/10.1038/88640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing